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ABSTRACT
Reputable users are valuable assets of a web site. We fo-
cus on user reputation in a comment rating environment,
where users make comments about content items and rate
the comments of one another. Intuitively, a reputable user
posts high quality comments and is highly rated by the user
community. To our surprise, we find that the quality of a
comment judged editorially is almost uncorrelated with the
ratings that it receives, but can be predicted using standard
text features, achieving accuracy as high as the agreement
between two editors! However, extracting a pure reputation
signal from ratings is difficult because of data sparseness and
several confounding factors in users’ voting behavior. To ad-
dress these issues, we propose a novel bias-smoothed tensor
model and empirically show that our model significantly out-
performs a number of alternatives based on Yahoo! News,
Yahoo! Buzz and Epinions datasets.

Categories and Subject Descriptors
H.3.4 [Systems and Software]: User profiles and alert
services; G.3 [Mathematics of Computing]: Probability
and Statistics

General Terms
Algorithms, Experimentation, Human Factors, Measurement

1. INTRODUCTION
The success of social media applications, such as news

groups, blogs, online forums, question-answering systems,
and social news services, depends highly on the quality and
attractiveness of the contributions from regular users. Usu-
ally, good contributions are produced by a relatively small
set of “reputable” users and consumed by a large user pop-
ulation. Intuitively, one can use a reputation score to quan-
tify how good a user is at producing good contributions.
At a high level, we distinguish between two types of repu-
tation scores in a web system, external scores and internal
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scores. External (or public) reputation scores are user fac-
ing, and usually used to incentivize users for desired behav-
ior; e.g., Yahoo! Answers displays the points that a user
earned to recognize those who provided good answers. The
key problem is how to design a good reward and incentive
mechanism. This is an important problem, but this paper
is devoted to another equally important problem, namely
estimating internal reputation scores from data. Internal
reputation scores are not revealed to users, but used to sup-
port internal applications. They are useful for at least the
following use cases: (1) Ranking and recommendation: Con-
tent items (i.e., user contributions) can be ranked or recom-
mended based on the author’s reputation. Users can also be
recommended to follow their content based on their reputa-
tion scores. These scores can also be used in any ranking
algorithms as features. (2) Content enrichment: Media por-
tals can use the contribution from reputable users to enrich
existing content pages. For example, a news site can add
related tweets from reputable users to a news article page.
(3) Crowdsourcing: To reduce costs, it may be desirable for
media portals to give some regular users privilege to curate
(add value to) their content pages and moderate (manage)
user contributions and the contributors. Reputable users are
good candidates for such tasks. (4) Abuse detection: Rep-
utable users are not likely to abuse the system. Reputation
scores can be important features to improve abuse detectors.
Also, reputable users may help report spam for removal.

Although we are interested in user reputation in any UGC
(user-generated content) systems and the methods devel-
oped in this paper may also be applied to them, we ground
our study in a particular kind of UGC environment, namely
the comment rating environment where users make com-
ments about content items and rate (e.g., thumb up or down)
the comments of one another. The reasons are two-fold: (1)
Focusing on a specific environment allows us to better un-
derstand the notion of reputation since discussion of repu-
tation is usually not meaningful without a specific purpose
and context [10, 42]. (2) Almost all UGC systems have an
environment to allow users to express their opinions through
comments. Thus, the scope of this study is not limited to
the specific comment rating environment that we investigate
— the results are useful for almost all UGC systems.

To determine the reputation score of a user, we identify
two important and quite distinct dimensions:

• Quality of the comments that the user makes, which is
defined by a set of guidelines that incorporate relevance,
usefulness, abusiveness, writing quality, etc., and can be
judged by human editors.
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• Support that the user receives from the user community,
which is estimated from the rating data.

Originally, we focused on comment quality and would like to
identify users who make high quality comments by appropri-
ately aggregating the ratings that they receive. However, to
our surprise, we find that the quality of a comment and the
ratings on the comment are almost uncorrelated. Also to our
surprise, we find that standard features extracted from com-
ment text can be used to predict quality-based reputation
scores with accuracy as high as the agreement between two
trained editors (with rank correlation around 0.4 in terms of
Kendall’s tau). This result suggests that, even for trained
editors, it is not easy to have high agreement to what means
by high quality, and a few standard text features are suffi-
cient to capture what they agree to. Therefore, we turn our
focus to understanding what user ratings stand for. Further
investigation reveals that users usually give high ratings to
the opinions or viewpoints that they support irrespective
of the quality; e.g., supporters of President Obama almost
always give pro-Obama comments high ratings. Thus, the
level of support that a user receives from the user community
is an important notion of user reputation in the comment
rating environment, almost orthogonal to quality.
However, it is challenging to quantify the level of support

that a user receives based on biased rating data. If we were
able to require all users to rate all comments, the average
rating that a user receives (i.e., the average rating on all of
his/her comments from all users) would be the level of sup-
port that he/she receives from the user community. We call
this the unobserved true support score of a user. However,
each user j usually only receives ratings from a small and
biased subset of users. For example, the subset of users may
happen to include only users who share the same opinion as
user j. One of our main technical contributions is to address
how to approximate the true support score using sparse and
biased rating data.
Any reputation system is subject to gaming and attack.

A rigorous solution to this issue is future work.

Contributions and Outline: Specifically, we make the
following contributions:

• Difference between comment quality and ratings: In Sec-
tion 2, we define comment quality and show the surpris-
ing lack of correlation between quality and ratings based
on more than ten thousand editorially labeled comments
on Yahoo! News and Yahoo! Buzz. To our knowledge,
this lack of correlation has not been reported before. In
Section 3, we also show that standard machine-learning
models with standard text features can achieve high accu-
racy for predicting quality-based user reputation, whereas
rating-based methods (including PageRank on the rating
graph) fail miserably.

• Average rating over the entire user community as a support-
based reputation score: In Section 4, we define support-
based user reputation and propose a simple method to
approximate the true support score based on a rating
prediction model built on rating data. To our knowledge,
this approach to defining user reputation has not been
studied before. Since users interact with one another in
multiple contexts (e.g., politics vs. entertainment), we
further break down support scores by contexts.

• Bias-smoothed tensor model: In Section 5, we develop a

novel latent factor model for multi-context rating predic-
tion. This model is based on a rating-generation assump-
tion especially suited for estimating user reputation in a
comment rating environment. Interesting, the true sup-
port score corresponds to the author-reputation factor in
the model, which represents reputation after removing a
number of confounding factors. In Section 6, we show
strong empirical performance of the proposed model.

We conclude and discuss related work in Section 7.

2. EDITORIAL AND RATING DATA
Users who make high quality comments are valuable. It is

sometimes believed that, by appropriately aggregating the
ratings, we can find those users. In this section, we define the
quality-based reputation score, and show that user ratings
are almost uncorrelated with comment quality.

Data: We collected comment rating data from Yahoo! Buzz
(Y!Buzz) and Yahoo! News (Y!News) during a 3-month pe-
riod. Users on these sites can post comments on articles
and rate the comments of one another by thumb-up votes
(positive ratings) and thumb-down votes (negative ratings).
We say that user i gives user j a rating if i gives a rating to
j’s comment. The Y!Buzz dataset includes 1.8M comments
authored by 217K users and 11M ratings given by 184K
users. The Y!News dataset includes 9M comments authored
by 1.6M users and 67M ratings given by 1.5M users.

2.1 Defining Quality Scores
We define the quality score of a comment based on a set

of editorial guidelines, and the quality score of a user is ob-
tained by averaging the quality scores of his/her comments.
Specifically, we asked Yahoo! editors (who are hired and
trained to label web pages for different tasks) to label each
comment using the following five labels:

• Excellent: Expert opinion, superb quality, thoughtful,
voice of reasoning, very useful.

• Good: Somewhat useful/thoughtful, informative, inter-
esting, good quality.

• Fair: No meaningful/valuable point, but not harmful.

• Bad: Irrelevant to the context (article and other com-
ments), bad writing.

• Abuse: In violation of terms of service, e.g., spam, ha-
rassment, adult content.

A set of example comments for each of the five labels is also
given to the editors to help distinguish different labels. We
then assign numerical scores to these labels: Excellent=2,
Good=1, Fair=0, Bad=−1, and Abuse=−2. We tried other
ways of mapping levels to numerical scores and did not ob-
serve any significant difference in any of our results. The
quality-based reputation score of a user is the average score
of the comments posted by the user. The average is, in fact,
computed base on 10 labeled comments per user. In total,
we collected 13,700 editorial labels on comments in Yahoo!
Buzz and 3,000 on comments in Yahoo! News.

2.2 Difference between Quality and Ratings
At first glance, one might think user ratings should have

some correlation with quality scores. However, we find that
these two do not correlate well. To understand the corre-
lation, we randomly select 707 Yahoo! Buzz users who re-
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Figure 1: Editorial score vs. rating-based score

ceived at least 100 ratings. Note that on Yahoo! Buzz, users
rate comments by thumb-up (positive rating) or thumb-
down (negative rating) votes. For each of these user, we ob-
tain his/her quality score and two versions of simple rating-
based scores: #thumb-up votes of a user is the number of
thumb-up votes that the user receives, and the thumb-up rate
is the user’s #thumb-up votes divided by the total number
of votes that he/she receives. We also tried different kinds
of denominators for thumb-up rate, e.g., number of com-
ments he/she posts, number of unique user rated his/her
comments, etc, and observe no significant difference. Fig-
ure 1 shows the scatter plots that compare the quality scores
to these two rating-based scores. Each point represents one
user. If quality scores correlate well with rating-based scores,
we should see points along the diagonal line. However, the
points in the two plots are almost random, showing lack of
correlation between the quality and rating-based scores. The
same behavior is observed in Yahoo! News. In Section 3,
we will show that more complicated ways of using user rat-
ings to predict quality scores (including a PageRank-style
method) also fail to be useful. After inspecting the com-
ments of those users, we find that:

• Editors rate a comment based on the guidelines.

• Users vote for whatever they support. For example, a low
quality comment that supports President Obama may
draw many thumb-up votes from his supporters. Like-
wise, a high quality comment that supports President
Obama may draw many thumb-down votes from people
who are against him.

The above two criteria are very different.

3. PREDICTING QUALITY SCORES
We now apply machine-learning methods to predict qual-

ity scores and show that standard text features can capture
comment quality to the level of the agreement between two
different editors who independently judge those comments.

Features: We extract the following sets of features from a
comment: (1) Length: Numbers of total words, unique words
and characters in a comment. (2) Lexical diversity: Number
of unique words divided by number of words. (3) Textual
similarity: Similarity between the comment and the article
that the comment is about. We include cosine similarity and
jaccard similarity. (4) Bad words: We collected hundreds of
words considered bad in comments and count the number
of bad words in the comment. (5) Spellcheck: Percentage of
words in the comment that are not in a standard English
dictionary. (6) Readability: Three readability scores [28,

Table 1: Accuracy of Quality Score Prediction

Rank correlation
Model Yahoo! Buzz Yahoo! News

use vote no vote use vote no vote
Random Forest 0.4164 0.4049 0.4601 0.4684

GBRank 0.4054 0.4016 0.4554 0.4515
Linear model 0.3926 0.3901 0.4706 0.4619
Two editors 0.4157 0.4280
PageRank 0.0576 -0.0368

11, 16]. (7) Capital words: Percentage of capital words,
percentage of capital characters. (8) Rating: Numbers of
thumb-up and thumb-down votes, thumb-up rate.

Models: We build and compare a number of machine-
learning models: Random forest [8], GBRank [44] and linear
regression model. Each model takes the features of a com-
ment as the input and predict the editorial score of that
comment. The predicted reputation score of a user is the
average of the predicted scores of his/her comments.

PageRank: As PageRank-style methods are frequently used
to identify authority or reputation, we include an edge-weighted
version of PageRank in our comparison. Rating data can be
represented as a graph. We draw an edge from user i to
user j if i gives a rating to the comment of j. Let n+

ij and

n−
ij denote the number of positive ratings (thumb-up) and

the number of negative ratings (thumb-down) that i gives j.
We try several different ways of defining edge weights wij .
The first is an unweighted version; i.e., wij = 1 if n+

ij > 0;
otherwise, wij = 0. Then, we consider wij(b0, b1, b2) =
⌊b0 + b1 n

+
ji − b2 n

−
ji⌋; with different settings of b0, b1, b2, we

can obtain different weighting schemes. We tune b0, b1, b2
and the damping factor settings heavily and only report the
result of the best setting. This heavy tuning may lead to
overfitting. However, what we will see is that even overfit-
ted PageRank cannot predict quality scores.

Evaluation: To evaluate the accuracy of a model, we first
rank the users by their predicted quality scores and then
determine how well it correlates with the ranking produced
by the editor-labeled ground-truth quality scores. A rank
correlation metric (Kendall’s tau) is used to measure the ac-
curacy. If the two ranked lists are the same, the rank correla-
tion is 1. If the model just randomly predicts scores, we get
0. We show the 5-fold cross validation results in Table 1. To
understand the importance of ratings in a model, we com-
pare a version of the model that uses rating features (the
“use vote” column) to a version that does not (the “no vote”
column). To understand how good a rank correlation value
(e.g., 0.41) is, we asked two editors to label the same set
of comments independently and compute two quality scores
for each user in the selected set. The rank correlation be-
tween two editors is shown in Table 1. As can be seen, the
performance of the models are as good as the agreement be-
tween two editors. In the Yahoo! News case, surprisingly
our models produce better rank correlations than the agree-
ment between two editors. This is unexpected, but possible
because our models are trained and tested based on quality
scores given by a single editor per comment (though differ-
ent comments may be judged by different editors), but the
two editors make independent judgment without looking at
the labels generated by each other.
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Discussion: We first note that PageRank fails miserably
even after heavy tuning. Next, by comparing the “use vote”
column with the“no vote”column, we find that rating-based
features almost add no value to quality prediction models.
Finally, we note that the rank correlation 0.41∼0.42 between
two editors is not very high. We did refine the guidelines
after each round of judgment by going through some ex-
amples; however, no significant improvement is observed.
Table 1 suggests that our text features almost completely
capture what different editors think in common in terms of
comment quality.

4. SUPPORT-BASED REPUTATION
As discussed in Section 2.2, users’ ratings show their sup-

port for different opinions or viewpoints, instead of comment
quality. Thus, the level of support that a user receives from
the user community is an important notion of reputation
in a comment rating environment. Because users interact
with one another in multiple contexts (e.g., topics or con-
tent categories), it is useful to quantify support level on a
per-context basis. In this section, we define support-based
reputation scores or simply called support scores.

Contexts: A user has different levels of expertise and dif-
ferent degrees of interest in different areas, thus receiving
different levels of support. A single score for each user is
usually insufficient. For example, a user who receives a high
level of support in the context of politics may not receive any
support in the context of entertainment. Thus, it is usually
desirable to break comments down by contexts, which may
be topics, categories, etc., and estimate a support score for
each user in each context. Now, the question is what should
be the contexts in which we estimate support scores. In
this paper, we define the set of contexts to be the set of the
topic categories that Yahoo! Buzz and Yahoo! News use
to classify news articles. Specifically, the context of a com-
ment is the category of the news article that the comment
is about, and the context of a rating is the context of the
rated comment. Example categories include Business, En-
tertainment, Health, Lifestyle, Politics, Technology, Sports,
etc. These categories are also what the users use to find
content items on the sites, and thus, are reasonable choices
to define support scores on. If the categories are not avail-
able, one can apply topic discovery techniques (e.g., Latent
Dirichlet Allocation [5]) to assign topics to comments.

Notation: The rating data consists of a set of observed
ratings. We say that user i gives user j a rating (or user i
rates user j) if i gives a rating to a comment authored by
user j. We call i the rater and j the author. Let yijk denote
the rating that user i gives user j in context k, and U denote
the set of all users in the comment rating environment.

True support score: We define the true support score sjk
of user j in context k as the average rating that user j would
receive in context k from all users, i.e., sjk =

∑
i∈U yijk/|U|,

where |U| denote the size of set U . For example, consider
a binary rating environment (e.g., thumb-up vs. thumb-
down). The true support score of user j is proportional1 to
the total number of users who would rate user j positively
if we were able to require all users to rate user j. It is
a very natural and ideal definition of support. It is also
interesting to note that true support scores are not sensitive

1The denominator of a true support score is a constant.

to gaming and attacks since it involves a summation over the
entire user base (as long as attackers do not control a large
fraction of users). However, these scores are not computable
from rating data because each user j usually only receives
ratings from a small subset of users.

Challenges: It is challenging to estimate the true support
scores. One simple approach would be to compute the sup-
port score of user j in context k as the average rating over
the small subset of users who have rated user j in context
k. The major issues with this approach are:

• Data sparseness: Because the subset is small, this average
is usually unreliable.

• Biased sample: Even if the user subset is large enough
to compute a reliable average number, it may not be a
representative sample of the entire user base. For exam-
ple, this subset of users may happen to include only users
who like one another (e.g., friends), or users who share
the same viewpoint as user j in the context.

Prediction-based support score: One conceptually sim-
ple approach to approximate the true support score is to use
a rating-prediction model — whenever we see an unobserved
(voter i, author j, context k) triple, we use the predicted rat-
ing ŷijk, which is output from the model. The accuracy of
these predicted support scores are directly linked to the ac-
curacy of the rating-prediction model used; the better the
model, the better the scores. However, averaging over all
users can still be quite computationally intensive; neverthe-
less, one may simply use a large enough random sample to
compute the average. In the next section, we propose a
novel rating-prediction model that is accurate and does not
require this averaging process to obtain support scores.

5. BIAS-SMOOTHED TENSOR MODEL
In this section, we introduce a novel latent factor model

for rating prediction, which is useful for extracting context-
specific reputation scores from rating data. This model is
motivated by the observation that users’ ratings are usually
generated according to several factors:

• Author reputation: The comments made by reputable
users tend to receive high ratings.

• Rater bias: Some users rate more positively than others.

• Agreement in opinions: Some users vote positively (or
negatively) on a comment because they agree (or dis-
agree) with the opinion in the comment, even when the
comment has no useful information (e.g.,“Obama is great”).

To extract pure reputation scores (author reputation) from
rating data, it is important to remove the effect of confound-
ing factors (rater bias and agreement in opinions). For ex-
ample, a positive vote from a user who always rates user j
positively should carry little weight when computing user j’s
reputation score. Interestingly, as we will see later, the au-
thor reputation factor with the effect of confounding factors
removed corresponds to the true support score.

5.1 Model
Notation: In addition to ratings, we may also have features
for users. Since we always use i to denote a rater and j to
denote an author, we abuse the notation a bit by using xik

to denote user i’s feature vector when he/she acts as a rater
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in context k and xjk to denote user j’s feature vector when
he/she acts as an author in context k.

Model specification: We assume that each rating yijk is
generated according to (1) the rater bias αik of user i in
context k, (2) the author reputation factor βjk of user j in
context k and (3) the similarity between the opinions of the
two users in context k, which is modeled as a tensor product
⟨vi,vj ,wk⟩ =

∑
ℓ viℓ vjℓ wjℓ of the opinion factor vectors vi,

vj of the two users and a context-specific weight vector wk.
We use dim(v) to denote the number of dimensions of the
opinion factor vector of a user. Mathematically, we assume:

yijk ∼ N(µijk, σ2
y) or Bernoulli(1/(1 + exp{−µijk}))

µijk = αik + βjk + ⟨vi,vj ,wk⟩

For numeric ratings, we use the Gaussian distribution de-
noted byN(mean,var); for binary ratings, we use the Bernoulli
distribution and the standard logistic transformation. We
then specify the prior distributions of the factors:

αik ∼ N(g′
kxik + qkαi, σ2

α,k), αi ∼ N(0, 1) (1)

βjk ∼ N(d′
kxjk + rkβj , σ2

β,k), βj ∼ N(0, 1) (2)

vi ∼ N(0, σ2
vI), wk ∼ N(0, I) (3)

These priors describe the generation process of the factors.
We first generate a global rater-bias factor αi for user i from
the standard Gaussian. Then, the expected value of the
context-specific factor E[αik] for context k is determined
by a linear function g′

kxik + qkαi of the global factor αi

and features xik, where gk and qk are the context-specific
regression weights. The actual context-specific factor αik is
then generated by adding a Gaussian random effect to E[αik]
to allow deviation from the linear function. βjk is generated
in a similar way, where βj is the global author-reputation
factor for user j, and dk and rk are the regression weights
for context k. For the opinion-related factors vi and wk, we
just put a Gaussian zero-mean prior, assuming no opinion
preference a priori. We call this model the bias-smoothed
tensor model, because the per-user context-specific “bias”
terms in the model (i.e., αik and βjk) are “smoothed” based
on the global factors (i.e., αi and βj). We note that this
model can be thought of as a significant extension to [18] by
adding regression-based hierarchical priors to the per-user
bias terms.
To summarize, given a rating dataset y = {yijk}, we will

learn the factors η = {αik, βjk, αi, βj ,vi,wk} and prior pa-
rameters (regression weights and variances) Θ = {gk,dk,
qk, rk, σ

2
y, σ

2
α,k, σ

2
β,k, σ

2
v,k} from the data. Note that it is ap-

propriate to set the prior variances of αi, βj and wk to 1,
because qk, rk and vi are learned from data; if we scale up
the variance of αi, qk will automatically be scaled down,
since they are not separable in qkαi.

Special case: Smoothed reputation-only model: To
better understand the above model, it is instructive to study
a simplified special case. Let us keep only the author-reputation
factors and set others to zero (thus called reputation-only
model); i.e.,

µijk = βjk, βjk ∼ N(d′
kxjk + rkβj , σ2

β,k), βj ∼ N(0, 1)

This model handles the data sparseness issue, but does not
address the sample bias issue (discussed in Section 4). To
understand how it handles data sparseness, we note that if

we have a lot of rating data for user j in context k, the
author-reputation factor βjk would mostly depend on the
observed data. However, if the data is sparse, βjk would be
influenced by the rating data of user j in other contexts and
the user features xjk. In fact, βjk would be “shrunk” toward
d′
kxjk + rkβj . The second term rkβj combines information

from other contexts; βj is intuitively a weighted average over
βjk and the weight of context k depends on σ2

β,k, which is
learned from data. The first term d′

kxjk is the prediction
based on features xjk and the weight vector dk is learned
from data; when the features are predictive, the number of
ratings required to achieve good accuracy would be small.
Intuitively, the potentially unstable βjk is “smoothed” based
on a regression on βj and xjk. The full model also enjoys
this nice property.

Opinion factors: To understand why ⟨vi,vj ,wk⟩ repre-
sents agreement between opinions, consider another simpli-
fied special case where dim(v) = 1 and wk = 1. Intuitively,
positive vi means a positive opinion on an issue; negative
vi means a negative opinion on the issue; and the absolute
value of vi represents the strength of the opinion. If vi and
vj are both positive or both negative, ⟨vi,vj ,wk⟩ = v′ivj
is high (at least a positive number); otherwise, it is low (a
negative number). The prior vi ∼ N(0, σ2

vI) will “shrink”
vi toward zero, meaning if we do not have much data for
a user, we do not associate him/her with a strong opinion.
The extension from dim(v) = 1 to n allows the model to cap-
ture opinions on multiple latent issues. Ideally, each context
should have a different set of issues. This would lead to a
high dimensionality problem; e.g., if we have m contexts and
n issues per context, then dim(v) = mn. The extension from
fixing wk = 1 to learning wk from data allows us to reduce
the dimensionality by assuming that the agreement between
two users in context k is determined by applying a context-
specific weight vector wk to the global latent opinion profiles
vi, vj of the two users.

5.2 Predicted Support Scores
Let ŷijk be the predicted rating that user i would give

user j in context k, ᾱk =
∑

i αik/|U| and v̄ =
∑

i vi/|U|.
For simplicity, we first consider the Gaussian model. The
predicted support score for user j in context k is

ŝjk =
∑
i∈U

ŷijk/|U| = βjk + ᾱk + ⟨v̄,vj ,wk⟩

Efficient computation: Notice that ᾱk and v̄ are sufficient
statistics for computing ŝjk. We only need to compute ᾱk

and v̄ once; after that, the computation of ŝjk does not
involve any averaging.

Removing global opinion bias: Sometimes it is useful to
force v̄ = 0, meaning that we believe, after averaging over
all users, there is no global opinion bias. After training, this
can be done by defining the following factors: vnew

i = vi− v̄,
αnew
ik = αik + ⟨vnew

i , v̄,wk⟩ and βnew
jk = βjk +

⟨
vnew
j , v̄,wk

⟩
.

It can be shown that

µijk = αnew
ik + βnew

jk +
⟨
vnew
i ,vnew

j ,wk

⟩
+ ck,

where ck is a constant, and v̄new = 0.

Confounding factor removal: Consider the case where
v̄ = 0 or v̄new = 0. We ignore the superscript for succinct-
ness. Then, ŝjk = βjk + ᾱk. Since ᾱk is a constant, the
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predicted support score is basically the author-reputation
factor βjk.

Logistic model: For the logistic model, the correspondence
is not that direct. However, since reputation scores are used
to rank users, the absolute values of the scores are not im-
portant. Thus, we may redefine the support score sjk to be
the average log-odds (instead of probability or predicted rat-
ing) that other users would rate user j positively in context
k. Then, the above discussion applies.

5.3 Fitting Procedure
We use the Monte Carlo EM algorithm [6] to fit the model.

The EM algorithm iterates between an E-step and an M-step
until convergence. Let Θ̂(t) denote the current estimated
value of the set of prior parametersΘ (defined in Section 5.1)
at the beginning of the tth iteration.

• E-step: We take expectation of the complete data log
likelihood with respect to the posterior of latent factors
η conditional on the observed data y and the current
estimate of Θ; i.e., compute

ft(Θ) = Eη∼Pr(η |y,Θ̂(t))[log Pr(y,η |Θ)]

as a function of Θ, where the expectation is taken over
the posterior distribution of (η |y, Θ̂(t)), which is not in
closed-form, thus, approximated by Monte Carlo mean.

• M-step: We maximize the expected complete data log
likelihood from the E-step to obtain updated values of Θ;
i.e., find Θ̂(t+1) = argmaxΘ ft(Θ).

Note that the actual computation in the E-step is to generate
sufficient statistics for computing argmaxΘ ft(Θ), so that
we do not need to scan the raw data every time when we
need to evaluate ft(Θ). At the end, we obtain a maximum
likelihood estimate of Θ, i.e.,

argmax
Θ

Pr(y |Θ) = argmax
Θ

∫
Pr(y,η |Θ) dη,

modulo local maximums and Monte Carlo errors. We then
can use the estimated Θ̂ to obtain the posterior distribu-
tion of the factors (η |y, Θ̂). For simplicity, we only de-
scribe the algorithm to fit the Gaussian model. The logistic
model for binary response is fitted using variational approx-
imation [22]. For convenience, we provide the formulas of
log Pr(y,η |Θ) and Eη[log Pr(y,η |Θ)] in the appendix.

5.4 E-Step
We use a Gibbs sampler to draw L samples of the factors

and compute the Monte Carlo mean.

Draw αi and αik: Now, consider that all the other factors
are given. Let oijk = yijk − βjk − ⟨vi,vj ,wk⟩ − g′

kxik and
α∗
ik = αik − g′

kxik. Then, we have

oijk ∼ N(α∗
ik, σ2

y), α∗
ik ∼ N(qkαi, σ2

α,k), αi ∼ N(0, 1)

Let Jik denote the set of authors that user i has rated
in context k. Let oik = {oijk}∀j∈Jik . Since all the dis-
tributions are normal, the distribution of (αi|oik) is also
normal, and can be obtained by

∫
p(αi, α

∗
ik |oik) dα

∗
ik. Let

ρik = (1 + |Jik|σ2
α,k/σ

2
y)

−1. We have

E[αi |oik] = Var[αi |oik]
(
ρik qk

∑
j∈Jik

oijk
σ2
y

)
Var[αi |oik] =

(
1 +

q2k
σ2
α,k

(1− ρik)

)−1

Then, letting oi = {oik}∀k, we obtain the distribution of
(αi |oi), which is normal with

E[αi |oi] = Var[αi |oi]
(∑

k
E[αi | oik]
Var[αi | oik]

)
Var[αi |oi] =

(
1 +

∑
k

(
1

Var[αi | oik]
− 1

))−1

Now, we draw αi from this distribution. Then, for each k,
we draw αik from the distribution of (αik |αi,oi), which is
normal with

E[αik |αi,oi] = V
(α)
ik

(
qk αi

σ2
α,k

+
∑

j∈Jik

oijk
σ2
y

)
+ g′

kxik

Var[αik |αi,oi] = V
(α)
ik =

(
1

σ2
α,k

+ 1
σ2
y
|Jik|

)−1

Draw βj and βjk: This is similar to the previous case.

Draw vi: For each user i, draw vi from (vi |Rest), which is
normal, for all i. Note that “Rest” here denote all the other
factors. Let Iik denote the set of users that user i receives
ratings from. Let oijk = yijk −αik − βjk and vjk = vj ◦wk,
meaning element-wise product.

E[vi |Rest] = V
(v)
i

(∑
j∈Jik

oijkvjk

σ2
y

+
∑

j∈Iik

ojikvjk

σ2
y

)
Var[vi |Rest] = V

(v)
i =

(
I
σ2
v
+

∑
j∈(Jik ∪Iik)

vjkv
′
jk

σ2
y

)−1

Draw wk: For each context k, draw wk from (wk |Rest),
which is normal, for all k. Let Uk = {(i, j) : user i gives user
j a rating in context k} and oijk = yijk − αik − βjk.

E[wk |Rest] = V
(w)
k

(∑
(i,j)∈Uk

oijk(vik◦vjk)

σ2
y

)
Var[wk |Rest] = V

(w)
k =

(
I +

∑
(i,j)∈Uk

(vik◦vjk)(vik◦vjk)′

σ2
y

)−1

5.5 M-Step
We use the following notations: â and V̂ [a] to denote the

posterior mean and variance of factor a, and V̂ [a, b] to de-
note the covariance between factor a and b, which are com-
puted as the sample mean, variance, covariance based on the
Monte Carlo samples obtained in the E-step.

Estimating (gk, qk, σ
2
α,k): Let θk = (qk, gk), zik = (α̂i,xik),

∆i = diag(V̂ [αi],0) and cik = (V̂ [αik, αi],0). We want to
find θk and σα,k that minimize

1
σ2
α,k

∑
i

(
(α̂ik − θ′

kzik)
2 + θ′

k∆iθk − 2θ′
kcik + V̂ [αik]

)
+ Nk log σ2

α,k,

where Nk is the number of raters in context k. By setting
the derivative to zero, we obtain

θ̂k =
(∑

i(∆i + zikz
′
ik)

)−1 (∑
i(zikα̂ik + cik)

)
σ̂2
α,k =

(
(α̂ik − θ̂′

kzik)
2 + θ̂′

k∆iθ̂k − 2θ̂′
kcik + V̂ [αik]

)
/ Nk

Estimating (dk, rk, σ
2
β,k): Similar to the previous case.

Estimating σ2
v and σ2

y: Let R andN denote the total num-

bers of ratings and users. We obtain σ̂2
v = (

∑
i trace(V̂ [vi])+

v̂′
iv̂i)/(N dim(v)) and σ2

y = ((yijk − µ̂ijk)
2 + V̂ [µijk])/R.
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6. EXPERIMENTAL RESULTS
We show strong empirical performance of our model in

this section. One novel aspect of our model is the use of
a regression-based hierarchical prior (Equation 1 and 2) to
link to the global factor. We first evaluate this component
by considering a special case, the smoothed reputation-only
model. Next, we show that the full bias-smoothed tensor
model outperforms a number of competitive models. Finally,
we show that, by removing bias, we see a higher correlation
between the predicted support scores and the quality scores.

6.1 Smoothed Reputation-Only Model
We use the Y!Buzz and Y!News datasets described in Sec-

tion 2 to evaluate this model. The ratings in these two
datasets are thumb-up and thumb-down votes. Thus, we
would like to see whether the regression-based hierarchical
prior can help improve thumb-up rate prediction in the pres-
ence of data sparseness. Each dataset has 10 contexts, which
are the content categories. Note that for users who receive
many votes, their observed thumb-up rates, defined as num-
ber of thumb-up / total vote, would be very close to their
true thumb-up rates. Thus, we select (user, category) pairs
that receive at least 50 votes, for users who have data in at
least 4 categories, and treat the observed thumb-up rates for
such pairs as the ground truth. We only evaluate our model
based on these ground-truth pairs.
We use 5-fold cross validation to compare the following

methods: (1) Constant: The constant model predicts every
(user, category) pairs to have the same value, which is the
average thumb-up rate in the test set. (2) Per-user aver-
age: This model computes the average thumb-up rate for
each user (ignoring contexts) based on the training data,
and then predict the user’s thumb-up rates in unobserved
contexts as this user-specific average rate. (3) Hierarchical-
only: This is the smoothed reputation-only model without
the regression part; i.e., βjk ∼ N(βj , σ2

β,k). (4) Regression
& hierarchical: This is the smoothed reputation-only model;
i.e., βjk ∼ N(d′

kxjk+rkβj , σ
2
β,k). We measure the model ac-

curacy using the root mean squared error (RMSE) between
the predicted thumb-up rate and the observed thumb-up
rate. The result is in the following table.

RMSE
Method Buzz News

Regression & hierarchical 0.1049 0.1488
Hierarchical-only 0.1142 0.1504
Per-user average 0.1222 0.1537

Constant 0.1901 0.1789

We note that the order of the four methods according to
their accuracies are the same in all five folds — the differ-
ence is significant. On the Yahoo! Buzz data, Regression &
hierarchical reduces the error by 45% from Constant, 14%
from Per-user average and 8% from Hierarchical-only. On
the Yahoo! News data, the error reduction is smaller. This
is probably due to the fact that our current News categories
are automatically extracted from article URLs (not editori-
ally labeled) and thus noisier than Buzz categories (which
are editorially labeled). Thus, the data does not provide pre-
cise context information for the model to take advantage.

6.2 Rating Prediction
Since the bias-smoothed tensor model is a rating-prediction

model, we compare its performance to other rating predic-

tion models. Our goal is not to show that our model beats
the best of all rating prediction methods, but to demonstrate
that, by incorporating the rating behavior on comments, we
can achieve better performance than general-purpose state-
of-the-art methods. After all, any rating prediction model
can be used to predict support scores. In addition to Y!News
and Y!Buzz datasets, we also use the Epinions dataset [32];
although it is not a comment rating dataset, it is publicly
available and can be used to compare different rating pre-
diction methods. Since reputable users should have certain
level of activity, we only select users who authored at least
30 comments to be included in the Y!News and Y!Buzz ex-
periments. For the Epinions experiment, we only select au-
thors who posted at least 10 reviews and received at least
100 ratings; we also create binary ratings by setting rating
values ≥ 5 to 1 and otherwise 0. We use the 10 content
categories as the contexts for Y!News and Y!Buzz, and the
top 10 verticals as the contexts for Epinions.

We compare the following four methods: (1) BST: the
proposed bias-smoothed tensor model. (2) BSM: a simplified
version of BST, called bias-smoothed matrix factorization.
Instead of tensor factorization, we do matrix factorization;
i.e., µijk = αik + βjk + v′

ivj . (3) GMF: the global matrix
factorization model, which does not use the context infor-
mation; i.e., µijk = αi + βj + v′

iuj . We also tried using
v′
ivj instead of v′

iuj and observed no significant difference.
(4) SMF: the separate matrix factorization model, where we
perform independent matrix factorization for each context;
i.e., µijk = αik + βjk + v′

ikujk without hierarchical prior on
αik and βjk. Again, we also tried using v′

ikvjk instead of
v′
ikujk and observed no significant difference. Let Model.n

(e.g., BST.5) denote a model with dim(v)=n (i.e., n opinion
factors per user). We only report the best dim(v) for each
method found in tuning. The mixed-membership stochas-
tic blockmodel (MMSB) [3] is also tried on the rating graph
(if user i rates user j positively (or negatively), we create a
positive (or negative) edge from i to j). We slightly modi-
fied MMSB to take negative edges (instead of assuming no
edge means negative). However, we observe that MMSB has
much worse accuracy than the above factorization methods.
To make the plots cleaner, we do not plot its performance.

Since the ratings are binary, we measure the performance
of different methods by AUC (area under ROC curve) [7];
higher AUC means better accuracy. To understand how
different methods handle data sparseness, when we com-
pute the test-set AUC numbers, we only consider (author,
context) pairs, each of which receives ≤ N ratings in the
training set. We then vary N from 0 to 10, so that the
performance of a method is represented by a curve. These
AUC curves are shown in Figure 2 for the three datasets.
As can be seen, BST has the best performance across the
three datasets. On the Epinions dataset, BST and BSF are
indistinguishable, suggesting that the interaction behavior
between users is similar across all contexts. By comparing
BST to SMF and GMF, we see a big gain by using regression-
based hierarchical priors.

6.3 Support vs. Quality
Although we saw lack of correlation between ratings and

quality, here we show that, by removing bias, we can increase
the correlation. The rank correlation between the predicted
support scores and editor-labeled quality scores are shown
in the following table.
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Figure 2: AUC of different rating prediction methods as a function of different data-sparseness levels

Model Buzz News
No opinion factor (dim(v)=0) 0.0817 0.0900
Use opinion factor (dim(v)=1) 0.1264 0.1328

As can be seen, having the opinion factors in the model (that
removes the effect of opinion bias) significantly improves the
rank correlation. Interestingly, different numbers of option
factors do not make a difference. Comparing to Table 1,
we see that our predicted support scores (based purely on
ratings without using any editorial data) have much better
performance than PageRank, but much worse than models
trained using editorial labels. This worse performance is
again due to the inherent difference between quality and
support as discussed in Section 2.2.

7. CONCLUSION AND RELATED WORK
We study the problem of how to estimate user reputation

in a comment rating environment and provide three novel
contributions: (1) We find surprising lack of correlation be-
tween comment quality and user ratings, which has not been
reported before. (2) We provide a new approach to estimat-
ing support-based reputation scores. (3) We propose a novel
latent factor model that captures the generation behavior of
comment ratings. In the following, we discuss prior work
related to these contributions.

Quality vs. Ratings: Text quality is a heavily stud-
ied problem [40]. The most related studies are those on
quality of UGC items, e.g., blogs [17], reviews [29, 12, 30],
answers [2] and others [20]. On the rating behavior side,
votes on reviews and answers are a popular topic [9, 29, 2].
Specifically, an exploratory analysis of votes on reviews is
reported in [9]. Liu et al. [29] found three biases of user
votes in reviews and developed a classifier based on text fea-
tures. However, they did not try to model these biases or
confounding factors as we do. Lu et al. [30] proposed an
ℓ2-regularization model to improve review quality predic-
tion by incorporating user profiles and social networks, and
Hsu et al. [20] proposed an SVM-based supervised ranking
algorithm to rank comment qualities. Talwar et al. [39]
found that a user’s rating partly reflects the difference be-
tween true quality and prior expectation of quality in a hotel
review dataset. Agichtein et al. [2] found that ratings are
useful for predicting answer quality, unlike what we found in
comments. To our knowledge, the sharp difference between
quality and ratings in a comment rating environment has
not been studied before.

Definition of reputation: External (user facing) reputa-
tion scores are used to incentivize users for desired behav-
ior. A few examples are [35, 37]. These scores are usu-
ally count-based and have to be simple so that users can
easily understand them. However, our focus is on internal
scores. In this area, many graph-based approaches have been
proposed based on PageRank [19, 23], trust/distrust prop-
agation [15, 45], mutual reinforcement propagation between
user reputation scores and content quality [4, 33] and fre-
quent patterns [14]. In addition, Agarwal et al. [1] also pro-
posed a graph-based algorithm to identify influential blog-
gers. Zhang et al. [43] conducted an extensive study com-
paring different scoring-based and graph-based reputation
estimation methods using a Java online forum. While most
existing graph-based approaches ignore the presence of con-
founding factors, Shin et al. [38] proposed a propagation
algorithm trying to separate user sociability from reputa-
tion. Statistical models are also used to identify reputable
users. For example, Maeno [31] developed a model for covert
node discovery in social networks and applied it to identi-
fying suspicious logs. Kuter [27] proposed a trust inference
algorithm that uses a probabilistic sampling technique to
estimate the confidence in the trust information from some
designated sources. See Jøsang et al. [24] and Farmer et al.
[10] for surveys of reputation methods. Different from the
above work, we define a conceptually simple, but unobserved
support score and address the challenges of computing the
score using statistical models.

Latent factor models: We reduce the problem of esti-
mating support scores to a rating prediction problem and
develop a novel latent factor model. Although any rating
prediction model can be used, we have shown strong perfor-
mance of ours. Our model is a significant extension to [18]
by adding regression-based hierarchical priors to the per-
user bias terms. Rating prediction is a hot problem in rec-
ommender systems. Factorization methods [36, 25] are very
competitive methods if not the best. Our goal is not to show
that our model beats the best of rating prediction methods,
but to demonstrate that, by incorporating the rating behav-
ior in comments, we can achieve better performance than
general-purpose state-of-the-art methods.

Other related work: We note that the problem of finding
reliable users in crowdsourcing is an interesting line of re-
search [21, 34, 41]. Exploratory analysis of comment rating
environments includes [26, 13].
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[13] V. Gómez, A. Kaltenbrunner, and V. López. Statistical
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Appendix: Let R = #observed rating, Nk = #raters and Mk

= #authors in context k. The complete data log likelihood of
bias-smoothed tensor model is:

2 log Pr(y,η |Θ) = some constant

−R log σ2
y −

∑
ijk

(yijk − αik − βjk − ⟨vi,vj ,wk⟩)2/σ2
y

−
∑
k

Nk log σ2
α,k −

∑
k

∑
i

(αik − g′
kxik − qkαi)

2/σ2
α,k

−
∑
k

Mk log σ2
β,k −

∑
k

∑
j

(βjk − d′
kxjk − rkβj)

2/σ2
β,k

−
∑
i

(
dim(v) log σ2

v + ∥vi∥2/σ2
v

)
−

∑
i

α2
i −

∑
j

β2
j −

∑
k

∥wk∥2

Use the notation defined in Section 5.5. The expected log likeli-
hood (over η) is

2Eη [log Pr(y,η |Θ)] = some constant

−R log σ2
y −

∑
ijk

(
(yijk − µ̂ijk)

2 + V̂ [µijk]
)
/σ2

y

−
∑
k

Nk log σ2
α,k −

∑
k

Mk log σ2
β,k

−
∑
k

∑
i

(α̂ik − g′kxik − qkα̂i)
2 + V̂ [αik]− 2qkV̂ [αik, αi] + q2kV̂ [αi]

σ2
α,k

−
∑
k

∑
j

(β̂jk − d′kxjk − rkβ̂j)
2 + V̂ [βjk]− 2rkV̂ [βjk, βj ] + r2kV̂ [βj ]

σ2
β,k

−
∑
i

(
dim(v) log σ2

v +
(
v̂′
iv̂i + trace(V̂ [vi])

)
/σ2

v

)
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