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ABSTRACT

Text corpora with documents from a range of time epochs are natu-
ral and ubiquitous in many fields, such as research papers, news-
paper articles and a variety of types of recently emerged social
media. People not only would like to know what kind of topics
can be found from these data sources but also wish to understand
the temporal dynamics of these topics and predict certain proper-
ties of terms or documents in the future. Topic models are usu-
ally utilized to find latent topics from text collections, and recently
have been applied to temporal text corpora. However, most pro-
posed models are general purpose models to which no real tasks
are explicitly associated. Therefore, current models may be diffi-
cult to apply in real-world applications, such as the problems of
tracking trends and predicting popularity of keywords. In this pa-
per, we introduce a real-world task, tracking trends of terms, to
which temporal topic models can be applied. Rather than building
a general-purpose model, we propose a new type of topic model
that incorporates the volume of terms into the temporal dynam-
ics of topics and optimizes estimates of term volumes. In existing
models, trends are either latent variables or not considered at all
which limits the potential for practical use of trend information. In
contrast, we combine state-space models with term volumes with
a supervised learning model, enabling us to effectively predict the
volume in the future, even without new documents. In addition, it is
straightforward to obtain the volume of latent topics as a by-product
of our model, demonstrating the superiority of utilizing temporal
topic models over traditional time-series tools (e.g., autoregressive
models) to tackle this kind of problem. The proposed model can
be further extended with arbitrary word-level features which are
evolving over time. We present the results of applying the model to
two datasets with long time periods and show its effectiveness over
non-trivial baselines.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous; H.3.3
[Information Storage and Retrieval]: Information Search and
Retrieval—clustering

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’11, August 21–24, 2011, San Diego, California, USA.
Copyright 2011 ACM 978-1-4503-0813-7/11/08 ...$10.00.

General Terms

Algorithms, Experimentation, Theory

Keywords

Topic models, Text mining, Temporal dynamics

1. INTRODUCTION
Text corpora with documents covering a long time-span are nat-

ural and ubiquitous in many application fields, and include such
data as research papers and newspaper articles. Mining from these
collections, discovering and understanding underlying topics and
ideas, continues to be an important task. In addition to traditional
text collections, many types of content in social media make apply-
ing machine learning techniques to these new data sources more
challenging, such as forums, question answering communities and
blog entries. People not only would like to know what kind of
topics can be found from these data sources but also wish to under-
stand the temporal dynamics of these topics, and hopefully predict
certain properties of terms or documents in the future.

Topic models (e.g., [5]), as a class of newly developed machine
learning tools, have been studied extensively in recent years. From
the seminal work done by Blei et al. [5], a large body of literature
about topic models has been established. Multiple disciplines of
computer science, ranging from information retrieval (e.g., [24]),
computer vision (e.g., [19]) to collaborative filtering (e.g., [1]) have
applied topic models to their problems. For text modeling, topic
models are applied to find latent topics from text collections, which
is particularly useful for temporal text corpora where discovered
latent topics can help researchers visualize and understand the the-
matic evolution of the corpora over time. This has led to the recent
development of incorporating temporal dynamics into topic models
(e.g., [14, 3, 21, 13, 15, 22, 20, 12, 23, 25, 2, 9, 10]). These models
enable us to browse and explore datasets with temporal changes in a
convenient way and open future directions for utilizing these mod-
els in a more comprehensive fashion. One drawback of these ex-
isting models is that most of them are general purpose models with
which no real tasks are explicitly associated. Therefore, it might be
difficult to employ these models in real-world applications, such as
the problems of tracking trends and predicting popularity of key-
words. As a result of the lack of a particular task, there is also no
consensus on how these models should be evaluated and compared.
Although perplexity is widely used in these papers, as pointed out
in [6], this measure may not have correlations with the quality (e.g.,
coherence) of topics discovered. Furthermore, no empirical or the-
oretical work has been done as far as we know to show the the cor-
relations between the low perplexity values and high performance
in third-party tasks such classification, regression and clustering. In



this paper, we argue that temporal topic models should be evaluated
on specific real-world tasks and propose such a task to compare
how they can contribute to applications. Some recent extensions of
topic models (e.g., [4, 11, 26, 18]) have tried to incorporate side
information, such as document-level labels and word-level features
(e.g., [17]) into models in order to perform classification and re-
gression tasks. A basic conclusion made from these attempts is that
these special-purposed models, aiming to optimize particular tasks,
perform better than general-purpose models, on the tasks they eval-
uated. We share a similar spirit in this paper, showing that temporal
topic models for special tasks perform better than general-purpose
models.

In this paper, we introduce a real-world task — tracking trends
of terms — to which temporal topic models can be applied. Rather
than building a general-purpose model, we propose a new type of
topic model incorporating the volume of terms into the temporal
dynamics of topics and directly optimize for the task. Unlike ex-
isting models in which trends are either latent variables or not con-
sidered at all and thus are difficult to apply in practice, we com-
bine state-space models with term volumes in a supervised learning
fashion which enables us to effectively predict volumes in the fu-
ture, even without new documents. In addition, it is straightforward
to obtain the volumes of latent topics as a by-product of our model,
demonstrating the superiority of utilizing temporal topic models
over traditional time-series tools (e.g., autoregressive models) to
tackle this kind of problem. The proposed model can be further ex-
tended with arbitrary word-level features which are evolving over
time. We present the results of applying the model to two datasets
with long time periods and show its effectiveness over non-trivial
baselines. Our contributions are threefold:

• Introduce a task — volume tracking — that can be used as a
standard evaluation method for temporal topic models

• Propose a temporal topic model that directly optimizes the
task introduced

• Demonstrate the effectiveness of the model as compared to
state-of-the-art algorithms by experimenting on two real-
world datasets

We organize the paper as follows. In Section 2, we review some
related developments of topic models and existing evaluation meth-
ods for temporal topic models. In Section 3, we introduce the task
of volume tracking, as a case of trend monitoring, and propose our
model . In Section 4, we show how to utilize variational inference
with Kalman Filter to estimate hidden parameters of the model. In
Section 5, we discuss some other models that can be used in the
volume tracking task. In Section 6, we demonstrate the experimen-
tal results on two datasets and conclude the paper in Section 7.

2. RELATED WORK
In this section, we review three directions of related work. First,

we summarize all up-to-date topic models which try to incorporate
temporal dynamics into the model. Then, we discuss the evalua-
tion of these models and the potential to apply them in real-world
applications. In the end, we present the attempts to embed side-
information, or features into topic models.

To incorporate temporal dynamics into topic models, many mod-
els have been proposed. Note, as we mentioned, these attempts are
general-purpose models, meaning that no real-world tasks are ex-
plicitly addressed. In general, all these models fall into two cat-
egories. The models in the first category do not impose a global
distribution assumption about how topics evolve over time. In

Table 1: Evaluation on Temporal Topic Models

(Temporal) Perplexity [3, 15, 20, 23, 25, 2, 9, 10]

Timestamp Prediction [21, 20, 10]

Classification/Clustering [25]

Ad-Hoc [21, 23, 25]

other words, these models assume that topics change over time de-
pending on their previous conditions, effectively making “Marko-
vian assumptions”. The examples in this category are Dynamic
Topic Model (DTM), proposed by Blei and Lafferty [3] and Con-
tinuous Time Dynamic Topic Models (cDTM), proposed by Wang
et al. [20], embedding state-space models into topic models. Our
work is inspired by this type of model. The second category of
models usually imposes a global distribution of temporal dynam-
ics. For instance, Wang et al. [21] introduce a beta distribution
over timestamps and incorporate it into the standard topic model.
Masada et al. [12] assume a Gaussian distribution over the whole
time-line of topics. Although these models are proposed under dif-
ferent contexts, the drawback of this category is that the distribu-
tional assumption is hard to justify. Based on the two basic cat-
egories, other extensions are proposed. For example, Nallapati et
al. [15] and Iwata et al. [9] focus on the problem of modeling topic
spreading on timelines with multiple resolutions, namely how top-
ics can be organized in a hierarchical way over time.

As in traditional topic models, the effectiveness of temporal topic
models is difficult to evaluate in general. This is partly because
these models are introduced without considering any tasks, making
the process of evaluating them on third-party tasks ad-hoc. Due
to a lack of evaluation tasks, comprehensive comparisons between
models are seldom conducted. In order to better illustrate how tem-
poral topic models have been evaluated, we show them in Table
1, according to the evaluation methods mentioned in papers. It
is clear that temporal perplexity is a popular evaluation method.
However, as pointed out in [6], perplexity may not have correla-
tions with the quality (e.g., coherence) of latent topics. In addition,
little is known, both theoretically and empirically, that a model
achieving lower perplexity will perform better on real-world ap-
plications which we care about. Besides perplexity, several papers
proposed some ad-hoc evaluation methods (named under “Ad-hoc”
in the table) to demonstrate the potential capabilities of their mod-
els, such as the coherence of topics measured by K-L divergence,
where these methods are not shared by other papers and are also not
really task-driven. Nearly all papers show “anecdotal examples” of
what kind of topics are found over time.

Since our model can be considered as an extension to incorpo-
rate side information, or features into topic models, we also review
other similar attempts. Basically, two kinds of side information
might be considered: document-level features and word-level fea-
tures. For document-level features, models are proposed (e.g., [4,
11, 26, 18]) to incorporate them either conditioned on latent topic
assignments or conditioned on per-document hyper-parameters. Ei-
ther maximum conditional learning or max-margin learning is em-
ployed for inference. For word-level features, a recently proposed
model [17] introduce a method to embed arbitrary word-level fea-
tures. Unlike the ones for document-level features, this model is
not a fully generative model and therefore we cannot easily infer
these feature values.
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Figure 1: A graphical representation of the model with only

two time epochs

3. TRACKING TRENDS BY INCORPO-

RATING VOLUMES
In this section, we will introduce the task of volume prediction

as a case of trend tracking. One reason that temporal topic models
are favored is perhaps that these models can be potentially used as
a tool to analyze trends and changes of keywords over time. How-
ever, these tasks are never evaluated directly or seriously in current
literature.

The task of predicting the volume of terms is to predict the nu-
meric volume of one or a set of keywords, given the historical data
of these keywords in the past. This is a natural extension of track-
ing and monitoring keywords over time. Indeed, some commercial
products provide such tools to allow users to browse and understand
the rise and fall of keywords, such as Google Trends. One
drawback of existing tools is that people usually only have a lim-
ited view of certain topics in which they are interested before they
fully understand these topics. For instance, for the event of “World
Cup”, the phrase “World Cup” is certainly of interest. However,
there are many more related terms to be explored, such as “FIFA”,
“South Africa” and “Ronaldo”. Sometimes, users have these re-
lated terms in mind but usually they are unable to prepare them in
advance. It would be great if users could track the trends (volume)
of a topic as a whole and discover all those related terms at the
same time. Moreover, the volume of terms in the same topic are
correlated, which may help the model to find better topics. Overall,
we would like to achieve three goals in tracking trends:

• Track and predict the volume of individual terms

• Obtain latent topics so that related terms can be grouped to-
gether

• Model the evolution of latent topics

The second goal will happen automatically through the modeling
of topic models. The last goal can be achieved by temporal topic
models, through either one of the assumptions mentioned in Sec-
tion 2. The first goal is the center of this work. We believe that our
work would help to track the volume of topics as a whole if the first
goal can be achieved. Note, in terms of “prediction”, we indicate
the ability to estimate the volume of individual terms in the future
where no documents are realized.

Two design issues need to be tackled when introducing term vol-
umes into the model. First, they are word-level variables (if we
treat features as random variables). Second, we need to predict val-
ues of these variables without documents. These two issues prevent
these variables from being placed in the document plates, in terms
of graphical modeling. This decision distinguishes our model from
previous models (e.g., [4, 11, 26, 18]) where response variables are
placed in document plates. Recently, Petterson et al. [17] demon-
strate a technique to embed word-level features into topic models.
Although our work shares similar ideas to theirs, their model is not
a generative model for word features but only for words in the doc-
uments. In addition, their work is not to predict these word-level
features. Since their work is for a static text corpus, it cannot be
easily utilized to model temporal data. Therefore, we do not in-
clude this model in our experiments for comparison. Our model is
a fully generative model for both word instantiations in documents
and word-level features.

Before we further go to the formal description of our model, we
discuss some intuitions behind the model. In standard topic models,
each word v is associated with many latent topics β1:K . Each topic
βk is a distribution over all terms in the vocabuary V . Intuitively,
the more a term appears in many topics, the more likely the term
will have a high volume, such as some stop words and functional
words. On the other hand, many terms only appear in a handful of
topics and therefore these topics determine the volume of the term.
If we think of β as another representation of terms, we would like
to associate these latent variables with the term volumes. Follow-
ing this intuition, we treat the volume of term v at time-stamp t,

denoted as Y
(t)
v , as a function of latent topics β. The simplest form

of such functions is a linear function:

Y (t)
v =

K∑

k=0

π(v,k)β
(t)
(k,v) + ǫv (1)

where πv is a vector of coefficients, β
(t)
(k,v) is the probability that

the term is “generated” from topic k at time stamp t, and ǫv is a per-
term “error”. In other words, the volume of a term v depends on
its prevalence in all topics at that time point. If ǫv follows a normal
distribution, namely ǫv ∼ N(0, σ2

v), we can express the generation

process of Y
(t)
V in terms of a Normal distribution as follows:

Y (t)
v | π(v), β

(t)

(∗,v)
∼ N

(
πT
v β

(t)

(∗,v)
, σ2

v

)
(2)

Here, Y
(t)
v is treated as a real valued variable. In our experiments,

we use the raw counts of term v at time epoch t as Y
(t)
v .

In order to obtain Yv at different time epochs, we need to have
β for different time points. We mention two basic categories of
approaches in Section 2 and here we adapt the first category, hav-
ing a “Markovian assumption” on the evolution of topics over time.
More specifically, topics β evolve according to a state-space model
and the documents with their words are “generated” by the cor-
responding topics in the same time epoch. Embedding these in-
tuitions into the model, the generative process of the model is as
follows:

1. For each topic k in K:

Draw topics β
(t)
k | β(t−1)

k ∼ N
(
β
(t−1)
k , δ2I

)
.

2. For each term v in V :
Draw term volume Y

(t)
v ∼ N

(
πT
v β

(t)

(∗,v)
, σ2
)

.

3. For each document d in time epoch t:

(a) Draw θd ∼ Dir(α)



(b) For each word n:

i. Draw z(d,n) ∼ Multi(θ).

ii. Draw w(d,n) ∼ Multi
(
f(β

(t)
z )
)

where function f maps the multinomial natural parameters to mean
parameters. The graphical representation of the model is shown
in Figure 1. Note, the model can be easily extended in multiple
ways. For instance, we can also allow the hyper-parameters of topic
proportions α to evolve over time, according to a different state-
space model, as already mentioned in [3]. In addition, the simple
state-space model can be replaced by a Brownian motion model
[20], allowing arbitrary granularity of time-series. We will explore
these extensions in future work.

4. VARIATIONAL INFERENCE WITH

KALMAN FILTERING
The central problem in topic modeling is posterior inference, i.e.,

determining the distribution of the latent topic structure conditioned
on the observed documents. In our case, the latent structures com-
prise the per-document topic proportions θd, per-word topic assign-

ments z(d,n), the K sequences of topic distributions β
(t)
k and per-

term coefficient vector πv for characterizing term volumes. Sim-
ilar to many topic models, the true posterior is intractable [3, 20],
meaning that we must appeal to an approximation.

Several approximate inference approaches have been developed
for topic models. The most widely used are variational inference
(e.g., [5, 3, 20]) and collapsed Gibbs sampling (e.g., [7, 21]). As
noted previously by others [3, 20], collapsed Gibbs sampling is not
an option in the sequential setting because the distribution of words
for each topic is not conjugate to the word probabilities. Therefore,
we employ variational inference for the model.

The main idea behind variational inference is to posit a simple
family of distributions over the latent variables, namely variational
distributions, and to find the member of that family which is closest
in Kullback-Leibler divergence to the true posterior. Variational
inference has been successfully adopted in temporal topic models
(e.g., [3, 15, 20]).

For the model descried above, we adapt variational Kalman fil-
tering [3] to the sequential modeling setting. We employ the fol-
lowing variational distribution:

q(β1:T ,θ,Z|β̂1:T ,λ,Φ) =

K∏

k=1

q(β1
k, · · · , β

T
k |β̂1

k, · · · , β̂
T
k )×

T∏

t=1

( Dt∏

d=1

q(θd|λd)

Nd∏

n=1

q(z(d,n)|φ(d,n))
)

(3)

The variational parameters are a Dirichlet λd for the per-document
topic proportions, multinomials φ for each word’s topic assign-

ment, and β̂ variables, which are “observations” to a Variational
Kalman Filter. The central idea of the variational Kalman filter is
that variational parameters are treated as “observations” in a com-
mon Kalman filter setting, while true parameters, here β(t), are
treated as latent states of the model. By utilizing a Kalman filter,
we can effectively estimate these “latent states” through “observa-
tions”.

More specifically, our state space model is:

β
(t)
k |β

(t−1)
k ∼ N

(
β
(t−1)
k , δ2I

)

β̂
(t)
k | β(t)

k ∼ N
(
βt
k, δ̂

2
t I
)

(4)

The variational parameters are β̂
(t)
k and δ̂t. The key problem of

Kalman filter is to derive the mean and variance for forward and
backward equations, which can be used to calculate the lower
bound in variational inference. Using the standard Kalman filter
calculation, the forward mean and variance of the variational pos-
terior are given by:

mt
k = E[βt

k|β̂
1:t

k ]

=

(
δ̂2

V t−1
k + δ2 + δ̂2

)
mt−1

k +

(
1−

δ̂2

V t−1
k + δ2 + δ̂2

)
β̂t
k

V t
k = E

[
(βt

k −mt
k]) | β̂

1:t

k

]

=

(
δ̂2

V t−1
k + δ2 + δ̂2

)
(V t−1

k + δ2) (5)

with initial conditions specified by fixed m0 and V 0. The back-
ward recursion then calculates the marginal mean and variance of

βt
k given β̂

1:T

k as:

m̃t−1
k = E[βt−1

k |β̂
1:T

k ]

=

(
δ2

V t−1
k + δ2

)
mt−1

k +

(
1−

δ2

V t−1
k ] + δ2

)
m̃t

k

Ṽ t−1
k = E

[
(βt−1

k − m̃t−1
k ]) | β̂

1:T

k

]

= V t−1
k +

(
V t−1
k

V t−1
k + δ2

)2(
Ṽ t
k − (V t−1

k + δ2)
)

(6)

with initial conditions m̃T = mT and Ṽ T = V T .
With these forward and backward equations in hand, we

turn to calculate the following lower bound (assuming Ω =
{α,β,π, σ2}) with the help of variational distributions introduced
in Equation 5:

logP (W,Y|Ω) ≥ Eq[log p(β)] + Eq[log p(W,Z,θ|β,α)]

+Eq[log p(Y|π,β, σ2)] +H(q)

= Eq[log p(β)] + Eq[log p(W|Z,β)] + Eq[log p(Z|θ)]

+Eq[log p(θ|α)] + Eq[log p(Y|π,β, σ2)] +H(q) (7)

where term H(q) is the entropy. To tighten the above bound on
the likelihood of the observations given by Jensen’s inequality is
equivalent to minimize KL-divergence. In the above bound, the
term Eq[log p(W,Z,θ|β,α)] is standard for topic models, when
logistic-normal distribution is applied to represent topics (e.g., [3,
20]. The term Eq [log p(β)] is standard for temporal topic mod-
els, which utilize the Kalman filter as a sequantial modeling tool.
The term Eq[log p(Y|π,β, σ2)] can be calculated similarly to the
document-level response variables, introduced in [4]. We will dis-
cuss these expectations in detail.

For the first term of the last line in Equation 7, we utilize the for-
ward and backward equations introduced in Equation 6 and follow
the similar steps in [3]:

Eq [log p(β)] = −
VKT

2
(log δ2 + log 2π)

−
1

2δ2

T∑

t=1

K∑

k=1

[(
m̃t

k − m̃t−1
k

)2
]
−

1

δ2

T∑

t=1

K∑

k=1

Tr
(
Ṽ t
k

)

+
1

2δ2

K∑

k=1

Tr
(
Ṽ T
k

)
−

1

2δ2

K∑

k=1

Tr
(
Ṽ 0
k

)



For the second term in the same line, we have:

Eq[log p(W|Z,β)] =
T∑

t=1

Dt∑

d=1

Nd∑

n=1

(
K∑

k=1

φ(n,k)m̃
t
(k,w)

−
K∑

k=1

φ(n,k)Eq

[
log
∑

w′

exp(β(k,w′))
])

where the second line demonstrates the essential problem of non-
conjugacy of using the logistic-normal distribution for topics. In

order to calculate Eq

[
log
∑

w′ exp(β(k,w′))
]
, we further obtain a

lower bound by introducing another variational parameter ζt and
upper bound the negative log normalizer with a Taylor expansion
as follows:

Eq

[
log
∑

w′

exp(β(k,w′))
]
≤ ζ−1

t

(∑

w′

Eq[exp(β(k,w′))]
)

−1 + log(ζt)

where the expectation Eq[exp(β(k,w′))] is the mean of a log nor-
mal distribution with the mean and variance obtained from the vari-
ational parameters, essentially Kalman Filters, in our case. For the
third term of the last line in Equation 7, we have:

Eq[log p(Z|θ)] =
T∑

t=1

Dt∑

d=1

Nd∑

n=1

K∑

k=1

φ(n,k)

[
Ψ(λ(d,k))

−Ψ
( K∑

k′=1

λ(d,k′)

)]

and for the fourth term, we have:

Eq[log p(θ|α)] =
T∑

t=1

Dt∑

d=1

{(
K∑

k=1

(αk − 1)
[
Ψ(λ(d,k))

−Ψ
( K∑

j=1

λ(d,j)

)])
+ log Γ

( K∑

k=1

αk

)
−

K∑

k=1

log Γ(αk)

}

For the last term in the same line, we have:

Eq[log p(Y
(t)
v |πv, β

(t)

(,v)
, σ2)] = −

1

2
log 2π −

1

2
log σ2

−

(
Y

(t)
v

)2

2
+

1

σ2

[
Y (t)
v

K∑

k=1

π(v,k)m̃
t
(k,v)

−
1

2

K∑

i=1

K∑

j=1

π(v,i)

(
m̃t

(i,v)m̃
t
(j,v)

)
π(v,j)

]

For the entropy term H(q), we have:

−H(q) = Eq[log q(β|β̂)] + Eq[log q(θ|λ)] + Eq[log q(Z|Φ)]

=
T∑

t=1

K∑

k=1

(T
2
log 2π

)
+
1

2

T∑

t=1

K∑

k=1

V∑

v=1

log Ṽ t
(k,v) +

T∑

t=1

Dt∑

d=1{(
K∑

k=1

(λ(d,k) − 1)
[
Ψ(λ(d,k))−Ψ

( K∑

j=1

λ(d,j)

)])

+ log Γ
( K∑

k=1

λ(d,k)

)
−

K∑

k=1

log Γ(λ(d,k))

}

+
T∑

t=1

Dt∑

d=1

Nd∑

n=1

K∑

k=1

φ(n,k) log φ(n,k)

Algorithm 1: Variational inference with Kalman filtering.

Initialize β̂ randomly.
while relative improvement in L > 0.00001 do

E step:
for t = 1 to T do

for i = 1 to D do
Update λd according to Equation 8
Update φd according to Equation 9

Update ζt according to Equation 10

M step:
for v = 1 to V do

Update πv according to Equation 12
Update σ2

v according to Equation 13

Update β̂ by using conjugate gradient descent

By using the expectations with respect to variational distributions,
we can optimize the variational parameters as follows. For per-
document parameters λ(d,k), per-word parameters φn and per time
epoch parameters ζt, we have similar update equations as standard
topic models:

λ(d,k) = αk +

Nd∑

n=1

φ(n,k) (8)

φ(n,k) ∝ exp

(
Ψ(λ(d,k))−Ψ

( K∑

k′=1

λ(d,k′)

))
×

exp

(
m̃t

(k,w) − Eq

[
log
∑

w′

exp(β(k,w′))
])

(9)

ζt =
1

Nt

Dt∑

d=1

Nd∑

n=1

(
K∑

k=1

φ(n,k)

∑

w

exp
(
m̃t

(k,w)

+Ṽ t
(k,w)/2

))
(10)

Since πv is a vector of coefficients across all time epochs T , we
gather the β∗

(∗,v) from all time epochs and form a T ×K matrix X
where each row is a vector of β values discussed before. We can
obtain the following equation by using the notation of X:

Eq [X
T
X]πv = Eq[X]TYv (11)

and therefore, we have

πv =
(
Eq[X

T
X]
)
−1

Eq[X]TYv (12)

where the tth row of Eq[X] is just Eq[β
t
(,v)]. Similar to linear re-

gression but in the expected version, we can obtain the update equa-
tion for σ2

v as:

σ2
v =

1

T

(
Y

T
v Yv − 2YT

v Eq[X]πv + πT
v Eq[X

T
X]πv

)
(13)

where πv is the new estimate value.
The real computational hurdle is to calculate the updates of β̂.

Gathering all terms in the lower bound involving β and differenti-



Table 2: AR model on NIPS dataset
p 2007 2008 2009 Avg.

1 98.57 90.51 99.42 96.17

2 101.72 83.20 91.06 92.00

3 97.66 77.31 97.00 90.39

4 112.83 75.62 95.98 94.81
5 118.10 91.64 108.33 106.03

6 118.65 99.00 108.34 108.66

7 118.76 98.99 117.50 111.75

8 122.73 95.93 116.72 111.79

9 122.55 96.23 115.85 111.54

10 143.17 100.71 124.40 122.76

ating them with respect to β̂t
(k,v), we have:

−
1

δ2

T∑

t=1

(
m̃t

(k,v) − m̃t−1
(k,v)

)(∂m̃t
(k,v)

∂β̂t
(k,v)

−
∂m̃t−1

(k,v)

∂β̂t
(k,v)

)

+
T∑

t=1

(
N(t,v)φ(v,k) −

V∑

v=1

N(t,v)φ(v,k)ζ
−1
t exp

(
mt

(k,v)

+V t
(k,v)/2

))∂m̃t
(k,v)

∂β̂t
(k,v)

+
1

σ2

T∑

t=1

Y t
vπ(v,k)

∂m̃t
(k,v)

∂β̂t
(k,v)

−

[
1

2σ2

K∑

i=1

K∑

j=1

π(v,i)

(
m̃t

(i,v)m̃
t
(j,v)

)
π(v,j)

]
∂m̃t

(k,v)

∂β̂t
(k,v)

Unfortunately, no closed-form solution for β̂ can be found. We

adapt optimization techniques to obtain a local optimum of the β̂
values. In our experiments, we utilize the conjugate gradient algo-
rithm implemented in GSL library1, which requires us to provide
the gradients. The forward-backward equations for Eq can be used
to derive a recurrence for the gradients. The forward recurrence is:

∂mt
(k,v)

∂β̂
(s)
(k,v)

=

(
δ̂2

V t−1
k + δ2 + δ̂2

)
∂mt−1

k

∂β̂s
(k,v)

+

(
1−

δ̂2

V t−1
k + δ2 + δ̂2

)
I[s == t]

with the initial condition ∂m0
k/∂β̂k

s
= 0. The backward recur-

rence is then:

∂m̃t
k

∂β̂k

s =

(
δ2

V t−1
k + δ2

)
∂mt−1

k

∂β̂k

s

+

(
1−

δ2

V t−1
k + δ2

)
∂mt

k

∂β̂k

(s)

with the initial condition ∂m̃T
k /∂β̂k

s
= ∂mT

k /∂β̂k

s
. We outline

the overall inference algorithm in Algorithm (1).
For prediction, since no documents are observed at test time, we

initialize β values with their expected values, according to Equa-
tion 4 and then obtain the mean of the posterior distribution by
the Kalman filter algorithm, as a standard problem. By using the
learned π values, we could easily predict the volume of terms
through Equation 1.

5. BASELINE MODELS
Time series analysis has been long studied in many fields. Here,

we discuss the possibility to employ one traditional time series tool,

1http://www.gnu.org/software/gsl/

Table 3: AR model on ACL dataset
p 2005 2006 2007 2008 2009 Avg.

1 131.85 524.04 39.57 592.91 126.29 282.93

2 210.74 316.38 106.31 434.15 181.98 249.91

3 247.73 248.17 104.72 381.84 140.87 224.65

4 258.74 246.58 114.23 447.71 166.09 246.67
5 244.41 223.99 53.12 428.17 185.00 226.94

6 250.49 297.98 42.74 385.26 209.24 237.14

7 169.25 328.75 51.14 345.98 262.54 231.53

8 168.54 332.20 51.58 396.08 291.13 247.90

9 155.96 326.73 47.11 400.96 291.60 244.47

10 156.59 355.13 49.15 399.28 310.65 254.16

autoregressive model, to track the volume of terms. In univariate
autoregressive model AR(p), a response Xt can depend on its pre-
vious values, ranging from Xt−1 to Xt−p:

Xt = w +

p∑

k=1

πkXt−k (14)

where w is a constant and π is a vector of coefficients. Similar to
linear regression, the aim of AR(p) is to learn w and π, as well as
the optimal choice of p, sometimes. If we treat the volume of each
term as X , it is obvious that the volume of terms are independent
with each other. A slightly more complicated model, Multivariate
AutoRegressive model MAR(p), captures the correlations between
M variables and preserves the simplicity of the model:

Xt = w +

p∑

k=1

AkXt−k (15)

where X and w are both M dimensional vectors and each A is a
M ×M matrix, encoding the correlations. Although it first seems
appealing, some limitations of the model prevent it from being ap-
plied in text mining scenarios. One of the drawbacks is that the
model usually requires the number of variables to be smaller than
the time stamps, which is not a problem in many traditional fields
(e.g., temperature and humidity over time). However, in many text
corpora, we wish to track thousands, or even millions of terms (e.g.,
in Twitter) while the total number of time epochs to be measured
is significantly smaller (e.g., in year, months, days). In that case, it
is impossible to solve the Equation 15, according to Neumaier and
Schneider [16]. Therefore, we do not use MAR in our experiments.

The second baseline used in experiments is Latent Dirichlet Al-
location (LDA) [5]. We run LDA for the whole dataset. For each
time epoch t, we obtain empirical topic distributions on t, βt. For

each term v, we treat β(,v) as features and Y
(t)
v as the response,

building a regression model on them. Note, this model is unreal-
istic because in reality, we cannot obtain empirical topic distribu-
tions from the test set due to the fact that no documents should be
observed from the test set. However, we include this model in the
experiments for the purpose to show that topic representations can
help volume prediction. A more realistic state-of-the-art model,
DTM, is also used in the experiments. Like our model, β values on
the test time epoch are estimated by the Kalman filter algorithm.
Similar to LDA, the topic distributions obtained by DTM are treated
as features and we build a regression model based upon these fea-
tures. The regression model used in experiments is Support Vector
Regression (SVR), implemented in libSVM2.

2http://www.csie.ntu.edu.tw/˜cjlin/libsvm/
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Figure 2: Performance comparison on the NIPS dataset. The

best RMSE values achieved by each model are shown for the last

three years.
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Figure 3: Performance comparison by varying the number of

topics K on the NIPS dataset.

6. EXPERIMENTS
Two datasets of scientific papers are used in our experiments.

One is from the NIPS conference series. We downloaded all elec-
tronic copies of papers from online proceedings3 and converted
into text format using pdftotext. We tokenize the converted
files and keep the terms with frequency larger than 10, resulting
in to 38,029 distinct terms and 4,360 papers in total, spanning
24 years. The second dataset is from the 2009 release of The
ACL Anthology

4, consisting of text format of papers published
in the community of computational linguistics. This dataset has
14,590 papers with 74,189 distinct terms (frequency more than 10),
ranging over 37 years. Both datasets have timelines that are long
enough such that some topics have changed over time.

The major evaluation measure is of course the accuracy of the
predicted volume of terms. In this work, we denote the estimated

volume of term v at time stamp t as Ŷ
(t)
v . Therefore, we mea-

sure the estimation error by calculating the Root Mean Square Error
(RMSE) between estimated values and real values:

RMSEt =

√
1

V

∑

v

(
Ŷ

(t)
v − Y

(t)
v

)2

For both datasets, we adapt an “incremental” evaluation process,
mimicking real application scenarios. In order to predict the vol-
ume at time t, we use the documents in all possible previous years
for training. We sequentially train and test the model in multiple
years and average the RMSE over these time periods. We conduct
experiments on the last three years for the NIPS dataset and the

3http://books.nips.cc/
4http://clair.si.umich.edu/clair/anthology/
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Figure 4: Performance comparison on the ACL dataset. The

best RMSE values achieved by each model are shown for the

last five years.
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Figure 5: Performance when a fraction of the test documents is

provided to the model.

last five years for the ACL dataset. For hyper-parameters, α is set

to 50/K, δ2 is set to 0.1 and δ̂2 is set to 1.0, similar as [3], for all
experiments.

6.1 Volume Prediction
As discussed in Section 5, the first baseline we consider is the

AR model for terms. In our case, we essentially build an AR model
for each term. Rather than choosing the optimal p by some criteria,
such as Bayesian information criterion (BIC)5 or Akaike informa-
tion criterion (AIC)6, we simply show the predictive performance
by varying p values. Therefore, it is possible that the optimal p
value is out of the ranges demonstrated here. The results for the
AR model on the NIPS dataset are shown in Table 2 and the re-
sults on the ACL dataset are shown in Table 3, where the optimal
performance is in bold. Several conclusions can be made regard-
ing these results. First, for both datasets, the optimal performance
is not always obtained on p = 1, when the volume of terms only
depends on the previous year. On average, p = 3 gives optimal per-
formance on both datasets, meaning that the volume of terms in the
year t depends on the previous three years. For the NIPS dataset,
after the optimal point, the performance decreases as p increases,
which indicates that for the AR model, no additional advantages
can be obtained if we consider higher order dependencies on this
particular dataset. This observation might also indicate that the
latent relationships among terms, essentially topics, may change
over time. Some new terms are introduced and some old concepts
are outdated. For the ACL dataset, this is more complicated since
the performance fluctuates significantly as p varies. Unlike the the

5http://en.wikipedia.org/wiki/Bayesian_information_criterion
6http://en.wikipedia.org/wiki/Akaike_information_criterion
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Figure 6: Perplexity comparison on NIPS dataset.

NIPS dataset in which performance is relatively consistent over
the recent three years, predictive performance on the ACL dataset
differs significantly from year to year.

We run LDA, DTM and our model on both datasets while vary-
ing the number of topics, K. The results for the NIPS and the
ACL datasets are shown in Figures 2 and 4, respectively. For each
model, we only report its best performance. In addition, for both
datasets, we also compare these models to the best performance
achieved by the AR model. Note, as we mentioned before, LDA is
unrealistic since β values for the test years are from test documents
while in reality these values should be estimated from the past, as-
suming no documents observed in these test years. However, the
purpose of showing the results from plain LDA is to demonstrate
that the volume predictive performance can be greatly improved by
treating topic probabilities as features if we can obtain them “cor-
rectly”. For DTM and our model, these β values are estimated by
the Kalman filter algorithm, mentioned in Section 3, which do not
depend on the test documents at all. The first observation is that the
overall performance is significantly improved over the AR model,
in general. LDA is usually, but not always, better than AR in terms
of average performance. For DTM and our model, which both con-
sider temporal smoothing on topics, the performance is consistently
better than both LDA and AR. Our model is also better than DTM on
both datasets not only in terms of average performance but also in
terms of performance on individual years.

In order to better understand the performance of topic models,
we plot the performance on different K values averaged over the
test years for the NIPS dataset in Figure 3. It is clear that perfor-
mance is relatively stable compared to the AR model, where it is
sensitive to the p value, shown in Table 2. However, for all models,
as K increases, the performance slightly decreases, indicating that
a higher value of K may lead models to over-fit. In any case, op-
timal performance is obtained from 50-70 topics for DTM and our
model, which seems reasonable since NIPS is a relatively small
research community and the topics are consistent over consecutive
years. Similar conclusions can also be made for the ACL dataset.

Since DTM and our model prediction are performed on the year
in which no documents are observed, it may be interesting to see
whether performance would be improved if we partially observe
the test documents. We pick the best K from the above experi-
ments and feed a given fraction of test documents in a particular
year to both models. The results are shown in Figure 5. As ex-
pected, performance improves on both datasets for both models if
we observe partial data. However, when around 30% to 50% of test
documents are observed, performance stabilizes.

6.2 Temporal Perplexity
Although we argue in Section 2 that perplexity may not be an
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Figure 7: Perplexity comparison on ACL dataset.

appropriate evaluation method for temporal topic models, or for
topic models in general, we still provide a comparison of perplex-
ity between LDA, DTM and our model. Note, the performance on
perplexity might be misleading because this measure is to evalu-
ate how words in the documents can be assessed. Therefore, we
perform the standard steps to calculate perplexity on documents
in test years. As mentioned earlier, the real performance of these
models should be considered when test documents are not available
and how reliably the models can predict the response variables, not
words. We show perplexity on the NIPS and ACL datasets in Fig-
ures 6 and 7, respectively. Overall, the perplexity values of DTM and
our model are lower than LDA, for different K values, which con-
firms the observations in [3, 20]. In addition, perplexity decreases
as K increases in general, indicating that a larger K may explain
words better. However, the difference of perplexity between DTM

and our model is relatively small, compared to the volume pre-
dictive performance. This is not unexpected because our model
shares the same “generative” process for words in documents as
DTM. Therefore, this observation also confirms that perplexity may
not be appropriate to truly reflect the performance of different mod-
els, in terms of the tasks we care about. However, we do believe
that a thorough study of the relationships of perplexity and the per-
formance of third-party tasks for topic models is needed.

7. CONCLUSION
In this paper, we introduced a real-world task—tracking the vol-

ume of terms—to which temporal topic models can be applied. We
proposed a new type of topic model incorporating the volumes of
terms into the temporal dynamics of topics and directly optimize
for the task. We combined state-space models and the volume of
terms in a supervised learning fashion which enables us to effec-
tively predict the volume in the future. The volumes of latent top-
ics are by-products of our model, demonstrating the superiority of
utilizing temporal topic models over traditional time-series tools
(e.g., autoregressive models) to tackle this kind of problem. The
proposed model can be further extended with arbitrary word-level
features which are evolving over time. We presented the results
of applying the model to two datasets with long time periods and
showed its effectiveness over non-trivial baselines. Future work
might include the adoption of recently developed online variational
inference algorithms [8] to our model, enabling the processing of
large scale datasets.
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