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Subcellular location is an important functional annotation of proteins. An automatic,
reliable and efficient prediction system for protein subcellular localization is necessary
for large-scale genome analysis. This paper describes a protein subcellular localiza-
tion method which extracts features from protein profiles rather than from amino acid
sequences. The protein profile represents a protein family, discards part of the sequence
information that is not conserved throughout the family and therefore is more sensitive
than the amino acid sequence. The amino acid compositions of whole profile and the
N-terminus of the profile are extracted, respectively, to train and test the probabilistic
neural network classifiers. On two benchmark datasets, the overall accuracies of the pro-
posed method reach 89.1% and 68.9%, respectively. The prediction results show that the
proposed method perform better than those methods based on amino acid sequences.
The prediction results of the proposed method are also compared with Subloc on two
redundance-reduced datasets.

Keywords: Subcellular localization; probabillstic neural network; position-specific scor-
ing matrix; multiple sequence alignment; PSI-BLAST.

1. Introduction

Subcellular location of the proteins is an important cue for inferring on their func-
tional characteristic, interaction partners and potential roles in the cellular machin-
ery. Determination of subcellular localization via experimental processes is often
time-consuming and laborious, therefore, a number of in-silico subcellular local-
ization methods have been proposed in the past decade. These methods can be
generally categorized into the following groups. The first group locates the pro-
teins based on the existence of the sorting signals,37 which include signal pep-
tides, mitochondrial targeting peptides, and chloroplast transit peptides.21,39,40

The second group studies the whole sequence information such as the composi-
tion of the amino acid7,9,17,18,31,38,44,58 and the composition of the amino acid
pairs.28,32,42,54 The third group uses the concept of pseudo amino acid composition
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(PseAA) originally proposed by Chou10 to extract information through a set of dis-
crete correlation factors and various biochemical properties.8,13,22–24,41,46,51,52,58

The fourth group5,11,12,14,15 used the protein sample representation derived from
a higher-level database, such as functional domain (FunD) database, gene ontology
(GO) database, or their combination. The last group applied information fusion
techniques to integrate different prediction methods. For example, PSORT-B25,26

integrates the feature of the amino acid composition, the similarity to proteins
of known location, the signal peptides, the transmembrane alpha-helices, and the
motifs corresponding to specific localizations. Bhasin et al.2 ,3 and Garg et al.27 pre-
dicted subcellular locations by fusing the amino acid composition, the composition
of residue pairs, the composition of physico-chemical properties, and direct BLAST
search. With the development of human proteome project, subcellular localization
of human proteins begins to abstract more attention and some pioneering study
has been done by Garg et al.27 and Chou and Shen.19

This paper introduces an approach for eukaryotic protein subcellular localiza-
tion. The core idea of the proposed method (named as PNNSubPro) lies in the
assumption that protein profile provides more information and results in more reli-
able prediction of subcellular localization. Compared with the amino acid sequence,
protein profile derived from the multiple alignment program involves more common
characters of a family of proteins. In other words, protein profile concerns about
the conserved regions of this protein family and discarded the region not conserved.
In this work, the probabilistic neural network classifier is used to train and test the
features extracted from the protein profiles. The results show that the proposed
method has better performances than those methods based on amino acid sequence.

2. Materials and Methods

2.1. Data sets

Two datasets were used to test the performance of the proposed method. The
first one is Reinhardt and Hubbard’s44 eukaryotic protein dataset, which has been
used extensively to evaluate some existing subcellular locations methods such as
NNPSL,44 Subloc,31 Fuzzy k-NN,32 and ESLpred.3 The proteins in this database
were extracted from SWISSPORT 33.0 and the sequences were filtered as follows:

(1) only those appeared to be complete and having reliable annotations were kept;
(2) transmembrane proteins were excluded31,44 because reliable methods for pre-

dicting these proteins have been well developed;6,16,30,33,45

(3) plant proteins were also removed to ensure sufficient difference in composition.

The resulting dataset comprises 2427 eukaryotic proteins (684 cytoplasm, 325
extracellular, 321 mitochondrial, and 1097 nuclear proteins).

The second dataset, introduced by Huang and Li,32 was created by selecting all
eukaryotic proteins with annotated subcellular locations from SWISSPROT 41.0.
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Similar to the construction process of Reinhardt and Hubbard’s dataset, the trans-
membrane proteins were excluded. The remaining proteins were filtered by BLAST
with identity cutoff set to 50%. The final dataset comprises 3572 proteins (622 cyto-
plasm, 1188 nuclear, 424 mitochondria, 915 extracellular, 26 golgi apparatus, 225
chloroplast, 45 endoplasmic reticulum, 7 cytoskeleton, 29 vacuole, 47 peroxisome,
and 44 lysosome).

2.2. Probabilistic neural network

The probabilistic neural network (PNN)48 is a powerful machine learning technique.
The original PNN was designed to solve some drawbacks of the traditional back-
propagation neural network, such as the long training time and the false minimum
problem. The idea of PNN is based on the well-established statistical principles
derived from Bayes Decision Rule and non-parametric kernel based estimators of
probability density functions.

Consider a pattern vector x ∈ Rm in a C-classification problem. Based on Bayes
Decision Rule, x belongs to class k, (1 ≤ k ≤ C) if and only if

hkfk(x) > hifi(x), 1 ≤ i ≤ C, i �= k (1)

where hk and hi are the prior probability of the occurrence of the patterns from
class k and class i, and fk and fi are the probabilistic density function of the
samples in class k and class i, respectively. Usually the prior probability is known
or can be assumed to be evenly. Therefore, the key point to apply Eq. (1) is how
to estimate the probability density functions from the training samples.

The PNN is interpreted as a function which approximates the probability den-
sities of the underlying distribution of the training samples. A nonparametric esti-
mate method known as Parzen Window43 is used to construct the class-dependent
probability density functions for each class. Denote the jth training sample in the
ith class as x(j)

i , then the Parzen estimate of the probability density function for
the ith class is:

fi(x) =
1

(2π)
m
2 σmn

ni∑
j=1

exp

[
− (x − x(j)

i )T(x − x(j)
i )

2σ2

]
(2)

where n(i) is the number of the training samples in the ith class, m is the dimension
of the samples and σ is called “smooth parameter”. To simulate the form of Eq. (2),
the architecture of PNN is composed of four layers: input layer, pattern layer,
summation layer, and output layer (see Fig. 1). The input comprises m (m equals
the dimension of the feature vector) merely distributional units that supply the
same input values to all of the pattern units in the pattern layer. The pattern layer
comprises nT neurons, where nT is the number of the training samples. The pattern
unit outputs the inner-product of each weight vector (feature vector) and the test
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1x 2x jx
1mx − mx

Input Layer

Pattern Layer

Summation Layer

Output Layer

Output

Fig. 1. The 4-layer structure of the probabilistic neural network.

example. After that, the product is transformed by the activation function:

g(x) = exp

(
xTwk,i − 1

σ2

)
(3)

where wk,i is the weights from the kth unit in the first layer to the ith unit in the
second layer. The parameter determines the width of an area in the input space
to which each neuron responds. A larger σ leads to a larger area around the input
vector, where the radial basis function responds with significant output. In the
summation layer, the ith unit (1 ≤ i ≤ C) simply sums the outputs of the units
corresponding to the ith class. The output layer decides the predicted labels from
the summation layer by a Max–Win-All strategy. Specifically, the test sample is
classified to the class with maximal value of all units in the summation layer.

2.3. Position-specific scoring matrix

Each protein sequence (called query sequence) in the proposed dataset was used
as a seed to search and align homogenous sequences from the SWISSPROT 46.04

protein database using the PSI-BLAST program1 with parameters h and j set to
0.001 and 3, respectively. The aligned sequences are further converted into position-
specific scoring matrices (PSSMs) to express their homogenous information. PSSM
is a matrix with 20 rows and L columns, where L is the total number of amino
acids in the query sequence. The (i, j)th entry of the matrix represents the chance
of the amino acid in the jth position of the query sequence being mutated to amino
acid type i during the evolution process.

For convenience, let us denote

P(i) = [p(i)
1 ,p(i)

2 , . . . ,p(i)
ni

]
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as the PSSM of the ith sequence, where

p(i)
j = [p(i)

j,1, p
(i)
j,2, . . . , p

(i)
j,20]

T, 1 ≤ j ≤ ni,

and ni is the total number of amino acids of the ith sequence.

2.3.1. Features from PSSM

Each protein in the proposed method is represented by two features extracted from
its PSSM. The first feature is the amino acid composition of whole PSSM and the
second one is the combination of the amino acid compositions of whole PSSM and
the N-terminus of PSSM.

Feature 1

Feature 1 extracts the amino acid composition from whole PSSM. Denote

x(i) = [x(i)
1 , x

(i)
2 , . . . , x

(i)
20 ],

as the 20-dimensional feature vector of the ith protein. x
(i)
k (1 ≤ k ≤ ni) is the

composition of the kth amino acid in the PSSM of the ith protein and it is calculated
as follows:

x
(i)
k =

1
ni

ni∑
j=1

p
(i)
j,k (4)

where x is input into a PNN classifier for training and testing.
The prediction method based on feature 1 and the PNN classifier is denoted as

“PNNSubPro1”.

Feature 2

Feature 2 uses the similar extraction approach as module 1 but it also computes
the amino acid composition of N-terminus of the PSSM. Specifically, denote the
amino acid composition of the N-terminus of the PSSM of the ith protein as

y(i) = [y(i)
1 , y

(i)
2 , . . . , y

(i)
20 ].

Here, y
(i)
k (1 ≤ k ≤ 20) is calculated as follows:

y
(i)
k =

1
LN

LN∑
j=1

p
(i)
j,k (5)

where LN is the numbers of amino acids in the N-terminus of the ith protein. Then
the feature vector extracted by this module is defined as:

x ⊕ y = [x(i)
1 , . . . , x

(i)
20 , y

(i)
1 , . . . , y

(i)
20 ] (6)

where ⊕ is the operator of the concatenation. In this paper, the length of the
N-terminus LN equals 30.
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The prediction method based on feature 2 and the PNN classifier is denoted as
“PNNSubPro2”.

2.4. Assessment of performance

This paper uses the leave-one-out cross validation (jackknife test) to evaluate the
performance of a method on a dataset. The jackknife test is a rigorous and objective
method which was elucidated in a comprehensive review20 and a series of follow-up
papers.22,23,29,31,34,35,46,47,49–51,53,55–58 The overall accuracy (OA), the accuracy
for each class (Acc), and the Matthews correlation coefficient (MCC)36 were used
to assess the prediction result.

Denote M ∈ �C×C as the confusion matrix of the prediction result, where C is
the number of classes. Then Mi,j (1 ≤ i, j ≤ C) represents the number of proteins
that actually belong to class i but are predicted as class j. We further denote

pc = Mc,c, qc =
C∑

i=1,i�=c

C∑
j=1,j �=c

Mi,j ,

rc =
C∑

i=1,i�=c

Mi,c, sc =
C∑

j=1,j �=c

Mc,j,

(7)

where c (1 ≤ c ≤ C) is the index of a particular class. For class c, pc is the number
of true positive samples, qc is the number of true negative samples, rc is the number
of false positive samples, and sc is the number of false negative samples. Based on
the notations above, the overall accuracy (OA), the accuracy of class c (Accc), and
the Matthew’s Correlation Coefficient of class c (MCCc) can be calculated as:

OA =

C∑
c=1

Mc,c

C∑
i=1

C∑
j=1

Mi,j

(8)

Accc =
Mc,c

C∑
j=1

Mc,j

(9)

MCCc =
pcqc − rcsc√

(pc + sc)(pc + rc)(qc + sc)(qc + rc)
. (10)

3. Result and Discussion

The parameter σ is optimized by maximizing the overall accuracy in the leave-
one-out cross validation test and the prediction results on the two Reinhardt and
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Hubbard’s eukaryotic dataset and Huang and Li’s dataset are listed in Tables 1
and 3, respectively. The parameter σ equals 0.087 and 0.081 for Tables 1 and 3,
respectively.

3.1. Result and comparison on Reinhardt and Hubbard’s

eukaryotic dataset

In Table 1, the prediction results of the proposed method (PNNSubPro1 and
PNNSubPro2) are compared with the results of NNPSL,44 EuPSI-BLAST,3

Subloc,31 Fuzzy k-NN,32 and ESLpred.3 The overall accuracy of PNNSubPro1

reaches 88.3%, which is comparable with that of ESLpred (88.0%) but it is higher
than that of NNPSL (66%), Subloc (79.4%), and Fuzzy k-NN (85.2%). The over-
all accuracy of PNNSubPro2 (89.1%) is slightly higher than that of PNNSubPro1.
For mitochondria, the accuracy and MCC of PNNSubPro2 reaches 88.5% and 0.82,
which is significantly higher than the corresponding results of PNNSubPro1 and
other methods in Table 1. The results imply that the N-terminus provides impor-
tant information for localization of mitochondrial proteins.

The prediction results of PNNSubpro1 and PNNSubpro2 (Table 2) are also
compared with that of EuPSI-BLAST,3 which is a module of ESLpred. EuPSI-
BLAST searches the training set to find the protein most similar to the test protein
and classifies the test protein to the same class as the hit. Bhasin and Raghava3

did not publish the overall accuracy and the MCC of EuPSI-BLAST, but we are
still able to comfirm that PNNSubPro performs better than EuPSI-BLAST by
comparing the accuracies of each location.

To straightly demonstrate the advantage of feature extraction from protein
profiles rather than from amino acid sequences, we compared the performance of
PNNSubpro1 with PNNComp and Subloc.31 PNNComp uses the same feature as
Subloc (amino acid composition of sequence) and the same classifier as PNNSubpro1

(PNN), so it can be regarded as a bridge between Subloc and PNNSubpro1. The
results of the three methods are listed in Table 3. The difference between the perfor-
mances of PNNSubpro1 (88.3%) and PNNComp (81.2%) demonstrates that protein
profile involves more positive information for the prediction. The overall accuracy
of PNNSubpro1 is slightly higher than that of Subloc, which implies that PNN
performs better than SVM in this problem.

3.2. Result and comparison on Huang and Li’s dataset

We also compared the results of PNNSubpro with the fuzzy k-NN method32 on
Huang and Li’s dataset. To avoid overestimating, each pair of proteins in this
dataset had an identity of less than 50%.32 Huang and Li applied a fuzzy k-nearest
neighbor (fuzzy k-NN) model and dipeptide frequency to predict the 11 locations
in their dataset and achieved a overall accuracy of 58.1% by the leave-one-out cross
validation test. The overall accuracies of PNNSubPro1 and PNNSubPro2 reaches
67.9% and 68.9%, which are about 10% higher than that of fuzzy k-NN (see Table 4).
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Table 2. Comparison of the performance of two methods based on profiles and sequences,
respectively.

Subloc PNNComp PNNSubPro1

Subcellular
Location Ac (%) MCC Acc (%) MCC Acc (%) MCC

Cytoplasm 76.9 0.64 80.9 0.69 85.4 0.80
Extracellular 80.0 0.78 84.3 0.84 90.2 0.91
Mitochondria 56.7 0.58 60.1 0.59 75.4 0.73
Nuclear 87.4 0.75 86.7 0.79 93.3 0.87

Overall 79.4 – 81.2 – 88.3 –

PNNSubPro1 is the method proposed in this paper which extracts features by amino acid com-

position of profiles. PNNComp uses the same PNN classifier as PNNSubPro1 but it extracts the

amino acid composition from protein sequences rather than profiles.

Table 3. Comparison of the overall accuracy of Subloc,31 PNNSubPro,1 and PNNSubPro2 on
redundance-reduced datasets.

Filter Threshold (%) Number of Samples Subloc (%) PNNSubPro1 (%) PNNSubPro2 (%)

100 2427 78.6 86.7 88.5
50 1137 66.2 72.2 78.8
20 597 59.3 62.0 71.2

Table 4. Comparison of Fuzzy k-NN with PNNSubPro1 and PNNSubPro2 on Huang and Li’s
eukaryotic protein dataset.

Fuzzy k-NN PNNSubPro1 PNNSubPro2

Subcellular
Location Acc (%) MCC Acc(%) MCC Acc (%) MCC

Cytoplasm 35.4 0.31 51.5 0.45 49.7 0.43
Nuclear 71.5 0.58 82.3 0.70 77.4 0.66
Mitochondria 36.6 0.30 57.6 0.53 66.8 0.62
Extracellular 81.6 0.54 77.8 0.77 81.3 0.78
Golgi apparatus 15.4 0.27 19.2 0.18 7.7 0.08
Chloroplast 32.4 0.36 45.8 0.42 68.0 0.62
Endoplasmic reticulum 11.1 0.22 40.0 0.35 37.8 0.37
Cytoskeleton 28.6 0.44 0.0 0.00 0.0 0.00
Vacuole 6.9 0.16 13.8 0.12 17.2 0.17
Peroxisome 14.9 0.27 46.8 0.40 29.8 0.29
Lysosome 20.5 0.31 45.5 0.41 31.8 0.33

Overall 58.1 – 67.9 – 68.9 –

Acc: accuracy; MCC: Matthew’s correlation coefficient.

3.3. Result on redundance-reduced datasets

The two benchmark datasets used here were constructed by Reinhardt and
Hubbard, and Huang and Li, respectively. The former covers only four subcel-
lular locations allowing the inclusion of proteins with up to 90% sequence identity,
and the latter covers 11 location sites allowing sequence identity up to 50%. To
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Table 5. Comparison of the overall accuracy of Subloc,31 PNNSubPro,1 and
PNNSubPro2 on redundance-reduced datasets.

Filtering Threshold Number of Samples Subloc PNNSubPro1 PNNSubPro2

µ (%) (%) (%) (%) (%)

100 2427 78.6 86.7 88.5
50 1137 66.2 72.2 78.8
20 597 59.3 62.0 71.2

completely get rid of the homology or redundancy bias, an ideal dataset should
be constructed according to the criterion that none of proteins has more than
35% (or better yet, 20%) to any others in a same subset (subcellular location). In
addition, it is worthwhile to investigate whether the good performance of PNNSub-
Pro is due to the similarity in the sequences. To answer this question, we constructed
two redundance-reduced datasets by eliminating the homologous sequences from
Reinhardt and Hubbard’s eukaryotic dataset. Specifically, a redundance-reduced
dataset should not involve any pair of sequences having an identity higher than
µ, where µ is called filtering threshold. In this paper, m equals 50% and 20% for
the two redudance-reduced datasets, respectively. The BLASTCLUST program in
NCBI BLAST software was used to filter the homologous proteins from Reinhardt
and Hubbard’s eukaryotic dataset.

Table 5 shows the fivefold cross validation results of Subloc, PNNSubPro,1 and
PNNSubPro2 on the original Reinhardt and Hubbard’s eukaryotic dataset (µ =
100%) and the two redundance-reduced datasets with µ = 50% and µ = 20%,
respectively.a When filtering threshold µ = 50%, less than a half (1137 out of
2427) of the proteins in the original dataset is remained. In this case, the overall
accuracy of PNNSubPro2 decreases from 88.5% to 78.8%, which is less significant
than that of Subloc and PNNSubPro1. The similar situation also occurs when µ

further decreases to 20%. In summary, Subloc is more sensitive to homologous
proteins than PNNSubPro2 but less sensitive than PNNSubPro1. This implies that
the information from the N-terminus of the protein helps improve the robust to
non-homologous proteins.

3.4. Efficiency of PNNSubPro

The efficiency of PNNSubPro is compared with Subloc on a PC with 2.8GHz CPU
and 1GB memory. When the feature vectors have been generated, Subloc needs
183 minutes to finish the leave-one-out cross validation test while PNNSubPro1

and PNNSubPro2 needs 0.5 and 0.9min, respectively. During the read-world appli-
cation, however, PNNSubPro needs an additional 1–5min to generate the PSSM of

aThe results of Subloc, PNNSubPro,1 and PNNSubPro2 on the original Reinhardt and Hubbard’s
eukaryotic dataset are slightly different from those in Table 1. This is due to the results in Table 5
is obtained by fivefold cross validation and the results in Table 1 is obtained by leave-one-out
cross validation.
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each test sequence, so the actual prediction time of PNNSubPro is longer than that
of Subloc. Nevertheless, we believe that the performance of a subcellular localiza-
tion method is more important than its efficiency and the shortage of efficiency is
easily compensated by improve the performance of computer.

3.5. Future research

Most existing In-silico subcellular localization methods (including PNNSubPro)
are limited for predicting the single protein subcellular location only. As is well
known, some proteins belong to multiplex subcellular locations, meaning that they
can co-exist in several different location sites, or moving around among these sites.
These proteins are particularly interesting and may carry some special important
biological functions. Some pioneering work for predicting multiplex subcellular loca-
tions has been done recently15 and we are attempting to extend PNNSubPro to
predict proteins with multiplex subcellular locations. There are two direct ways to
extend single subcellular location prediction to multiplex subcellular location pre-
diction. The first way regards the proteins having multiplex subcellular locations
as belonging to some new classes. The second way is to define a measure (e.g. like-
lihood) for each subcellular location and classify the protein to those subcellular
locations with the measure larger than a threshold.

4. Conclusion

This paper proposed a method for eukaryotic protein subcellular localization based
on protein profile, which is generated by using PSI-BLAST program to search
the SWISSPROT database. The test on two benchmark datasets shows that the
proposed method outperforms the methods based on the information of amino
acid sequence. In addition, the prediction results on the two profile-based meth-
ods (PNNSubPro1 and PNNSubPro2) imply that utilizing the information of
the N-terminus help improve the prediction performance and the robust to non-
homologous proteins. Meanwhile, the proposed method can be easily involved in
multi-predictor systems such as ESLpred or PSORT-B and can play a supplemen-
tary role to those experimental localization methods.
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