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Summary

Studying the interactions between different brain regions is essential to achieve a more complete 

understanding of brain function. In this paper, we focus on identifying functional co-activation 

patterns and undirected functional networks in neuroimaging studies. We build a functional brain 

network, using a sparse covariance matrix, with elements representing associations between 

region-level peak activations. We adopt a penalized likelihood approach to impose sparsity on the 

covariance matrix based on an extended multivariate Poisson model. We obtain penalized 

maximum likelihood estimates via the expectation-maximization (EM) algorithm and optimize an 

associated tuning parameter by maximizing the predictive log-likelihood. Permutation tests on the 

brain co-activation patterns provide region pair and network-level inference. Simulations suggest 

that the proposed approach has minimal biases and provides a coverage rate close to 95% of 

covariance estimations. Conducting a meta-analysis of 162 functional neuroimaging studies on 

emotions, our model identifies a functional network that consists of connected regions within the 

basal ganglia, limbic system, and other emotion-related brain regions. We characterize this 

network through statistical inference on region-pair connections as well as by graph measures.

*wxue@emory.edu. 

Supplementary Materials
The Web Supplementary Materials including Web Appendices A–E referenced in Sections 1, 2.1, 2.2, 2.3, and 3.1 in the article are 
available at the Biometrics website on Wiley Online Library. The Web Supplementary Materials also include a description of the 
software in the Web Appendix F. The Matlab source code along with README are available at the webpage: http://
web1.sph.emory.edu/users/jkang30/software/PoissonGraph.html.
The code provides Matlab functions and an example script to make statistical inference on the Poisson graphical model.

NIH Public Access
Author Manuscript
Biometrics. Author manuscript; available in PMC 2015 December 01.

Published in final edited form as:
Biometrics. 2014 December ; 70(4): 812–822. doi:10.1111/biom.12216.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://web1.sph.emory.edu/users/jkang30/software/PoissonGraph.html
http://web1.sph.emory.edu/users/jkang30/software/PoissonGraph.html


Keywords

EM algorithm; Emotion; Functional brain networks; Functional co-activation pattern 
identification; Poisson Graphical Model

1. Introduction

Gaining insights into the human brain fundamentally relies on understanding interactions in 

neural activity between distinct brain regions. Functional neuroimaging technologies, such 

as functional magnetic resonance imaging (fMRI) and positron emission tomography (PET), 

enable investigations into such interactions. The concept of functional connectivity is 

applied widely in imaging studies to capture associations in brain function between different 

regions. For example, in a typical fMRI study, one can investigate functional connectivity 

by estimating the Pearson correlation, partial correlation, mutual information, spectral 

coherence, or joint activation between the spatially localized time series of blood oxygen 

level dependent (BOLD) signals, and a number of multivariate methods are available 

(Calhoun et al., 2001; McIntosh and Gonzalaz-Lima, 1994; Patel et al., 2006; Friston et al., 

2003; Wager et al., 2009).

Determining functional connectivity using data from a single functional neuroimaging study 

suffers some limitations, such as low power and high false positive rates due to small sample 

sizes. This motivates the need to model neural activity interactions between brain regions 

across independent studies using ideas from meta-analyses. In this article, we perform co-

activation meta-analysis to make inferences regarding functional connectivity, defined here 

by consistent co-activation between brain regions across different studies. Of note, our 

definition of FC is distinct from the most widely used one(s), which refer to Pearson (or 

partial) correlation between the time series for different voxels or brain regions (within-

subject) (Friston et al., 2003). However, it still provides information on the extent of 

association by defining FC in terms of joint activation (within-subject) between two voxels 

(or regions), in accordance with definitions from previously published work (Patel et al. 

2006; Friston, 2011). It is also important to note that our goal is different from that of 

common coordinate based meta-analyses of functional neuroimaging studies (Nielsen and 

Hansen, 2002; Turkeltaub et al., 2002; Wager et al., 2004; Kober et al., 2008; Eickhoff et al., 

2009; Kang et al., 2011), which focus on identifying the consistent activation locations 

across studies.

The typical pipeline of analyzing fMRI BOLD time series in a single functional 

neuroimaging study is shown in Figure 1(A). After data acquisition, several preprocessing 

steps are taken prior to analysis to minimize the influence of acquisition and physiological 

artifacts. In a standard statistical analysis, a two-stage model is applied, wherein the first 

stage fits the time series separately at each voxel and for each subject, and the difference (or 

contrast) in signal magnitudes is quantified between different conditions. This procedure is 

repeated for all the voxels in the brain and the resulting statistics are summarized in a 

statistical parametric map (e.g. a t map). In the second stage, one then produces a group 

level statistic map and generates a threshold, which usually accounts for multiple testing, 

and obtains a thresholded t map that identifies the statistically significant brain locations. 
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This process is called statistical parametric mapping (SPM) in the neuroimaging literature. 

Single studies rarely report the full SPM. Instead, they only report peak activation 

coordinates, which are the voxels with the largest t statistic in significant regions (or among 

clustered sets of significant voxels) of an SPM. We refer to these peak activation coordinates 

as foci or a single focus. For any pair of regions, the number of foci located in both regions 

from all studies reflects the strength of the co-activations for that region pair.

Using foci that are collected from different studies, methods to date have focused on 

identifying the co-activation for region pairs (Cauda et al., 2011; Kober et al., 2008; Patel et 

al., 2013; Postuma and Dagher, 2006; Robinson et al., 2012; Torta and Cauda, 2011) or 

component-driven approaches (e.g., principal component analysis (PCA) and independent 

component analysis (ICA) combined with clustering methods; Kober et al., 2008). In 

particular, Nielsen and Hansen (2004) proposed a matrix factorization algorithm, in which a 

matrix that represents the activation associated with particular tasks is decomposed. Kober et 

al. (2008) proposed a functional grouping approach, which analyzes the spatial density of 

reported foci using multilevel kernel density analysis (MKDA) and then combines non-

metric multidimensional scaling and cluster analysis to group regions based on their co-

activation patterns. Neuman et al. (2010) develop a structural learning approach in a 

Bayesian framework to construct a directed functional network, which yields probabilistic 

dependency between brain regions. The above methods are intended to identify co-activated 

regions, but they do not permit likelihood-based statistical inference for co-activation 

patterns of multiple foci.

There is a need to make joint inferences on co-activation for multiple regions (e.g., 

graphical) structures by directly modeling a multivariate distribution of foci counts in 

different regions, which can characterize the covariance structure of foci linking to a brain 

co-activation pattern. This enables researchers to estimate the joint likelihood of activations 

for multiple regions. We propose a multivariate Poisson graphical model (Weiss and 

Freeman, 2001) to estimate the co-activation patterns and to make inferences about 

functional networks defined by consistent co-activation patterns across studies. We 

characterize region-level co-activation patterns using the covariance of the number of foci in 

different regions, where these region-specific activation counts are jointly modeled by a 

multivariate Poisson distribution (Kawamura 1979; Karlis 2003; Yang and Kang 2010) (see 

Web Appendix A for details). We impose sparsity on the covariance function by assuming 

that only a small number of the potentially massive number of region pairs are co-activated 

for a particular brain function. Such sparsity considerations are supported by previous 

research findings (Huang et al., 2010). We propose a penalized likelihood approach to 

efficiently estimate the sparse covariance function. Specifically, we introduce a set of latent 

variables to facilitate obtaining the penalized maximum likelihood estimates (PMLE) of the 

covariance via the expectation-maximization (EM) algorithm. The latent variables explicitly 

model the expected number of co-activation foci between regions. The undirected functional 

network is then determined by the region-level estimated covariance between the numbers 

of foci. The proposed shrinkage method is tuned to reproduce the sparsity found in typical 

brain networks, and we optimize the shrinkage parameter based on the predictive log-

likelihood function.
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We consider an analysis of emotion studies to motivate our proposed modeling framework. 

We collect findings from 162 functional neuroimaging studies (publications), including 57 

PET and 105 fMRI studies. Collectively, these studies yield 2478 activation coordinates 

from 437 contrasts (e.g., happy vs. neutral) as in Kober et al. (2008). These studies were 

published in peer-reviewed journals from 1990 to 2005. We consider a total of seven 

different emotions, including sad (45 contrasts), happy (36 contrasts), anger (26 contrasts), 

fear (68 contrasts), disgust (44 contrasts), surprise (2 contrasts), mixed (41 contrasts) and 

affective (175 contrasts), a category for commonly used emotional stimuli that are not 

clearly associated with a single emotion category. For each study, the activation locations 

for these contrasts are included when they meet the criteria of statistical significance defined 

within each individual study. For each contrast, the coordinates of foci are assigned to 

different brain regions based on a widely used neuroanatomic parcellation (details provided 

later). The foci count over different regions represents the data in our analysis. An 

illustration of the emotion data is in Figure 1(B).

Our model makes several novel contributions. First, we are among the first to propose a 

framework for functional co-activation pattern identification to determine brain networks 

based on region-level activation counts, which are commonly used in neuroimaging meta-

analyses targeting localization. Our framework is based on a graphical model to represent 

sparse brain networks, extending the multivariate Poisson model. Secondly, our approach 

provides more interpretable results than many existing methods by explicitly modeling the 

strength of functional co-activations. Third, we propose a fast computational algorithm for 

parameter estimation as well as a feasible permutation testing procedure to assess the 

statistical significance of the identified brain network(s).

2. Methods

2.1 The Bivariate Model

We start with a bivariate model for any two regions i and j in the brain. Let n denote the 

number of contrasts in all the studies included in the meta-analysis. For contrast k(k = 1, …, 

n), let Xi,k and Xj,k represent the number of foci in regions i and j. We assume that (Xi,k, Xj,k)′ 

follows a bivariate Poisson distribution with parameter vector λ= (λii, λjj, λij), where λii is 

the variance of Xi,k, λjj represents the variance of Xj,k, and λij is the covariance of Xi,k and 

Xj,k (Kocherlakota and Kocherlakota, 1992). The joint probability function is

(1)

where xl,k = 1, 2,…, for l = i, j. Marginally Xi,k and Xj,k both follow Poisson distributions 

with respective parameters λii + λij and λjj + λij. The covariance between Xi,k and Xj,k, λij, is 

interpreted as the strength of the co-activation between regions i and j, and λij = 0 implies no 

statistical dependence between the regions.

We impose sparsity on the brain network by adding a penalty term to the likelihood based 

on (1), which shrinks λij toward zero. Let Xi and Xj represent the vector containing foci 
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counts for all contrasts in region i and j, respectively. We minimize the following penalized 

negative log-likelihood function with respect to λ given θ:

(2)

where the parameter θ controls the degree of sparsity. Larger values of θ will tend to shrink 

the covariance parameters toward zero, reflecting more sparsity in the brain network. For 

each network, the potential number of connections is , where p is the number of 

regions in the network. Despite this large number, Huang et al. (2010) posit that the 

functional connectivity network can be estimated by a sparse matrix due to network theories 

suggesting efficient neural processing. By incorporating sparsity, our approach attempts to 

tease out the more prominent connections in the brain.

The joint probability function of (Xi, Xj) is complicated, especially when the number of 

dimensions is large. Kano and Kawamura (1991) derived a recursive scheme for 

constructing the probability function of a multivariate Poisson distribution. However, the 

computational demand and errors induced by recursion increase with the number of 

dimensions. Kalis (2003) alternatively proposed an EM algorithm (Dempster et al., 1977; 

Meng and Van Dyk, 1997; McLachlan and Krishnan, 1997) based on the multivariate 

reduction derivation of the multivariate Poisson distribution for estimation, which we adopt 

in our paper.

To simplify computations, we introduce a latent Poisson variable Yij,k with mean λij to 

represent the number of co-activations in the two regions. We define

(3)

where Yii,k and Yjj,k represent the number of localized foci in regions i and j, respectively 

(without joint activation). This implies a new representation of Xi: Xi,k = Yii,k + Yij,k and Xj,k 

= Yjj,k +Yij,k. Also, the knowledge of latent variables Yij,k’s completely specify the data. By 

the distribution of Yij,k, Xi,k, and Xj,k, it is straightforward to show that

(4)

The expectation of Yij,k, λij, characterizes the covariance between Xi,k and Xj,k. Denoting Yij 

= (Yij,1, …, Yij,n)′ collectively for all contrasts, the penalized complete data negative log-

likelihood functiona is given by

(5)
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We use an EM-algorithm to minimize (5). The E-step calculates the conditional expectation 

of unobserved data Yij given the observed data X = (Xi, Xj) using the current estimates of 

the parameters, and the M-step minimizes the penalized complete data negative log-

likelihood.

The EM algorithm is described as follows, with an initial value of λ(0), for t = 0, …, T − 1, in 

the (t + 1)th step,

• E-step, compute

(6)

• M-step, update the estimates by

(7)

The iteration proceeds between the E-steps and M-steps and stops after attaining specified 

convergence criteria. Positive constraints are added in the algorithm to ensure the estimates 

are nonnegative. The joint probability function P (Yij,k, Xi,k, Xj,k) in (6) is derived in Web 

Appendix B. This algorithm is a special case of one addressed by Kalis (2003), which 

considers multivariate cases with the same covariance for all the pairs of random variables. 

Next, we consider a more general case that assumes an unstructured covariance matrix.

2.2 The Multivariate Model

A p-dimensional Poisson model might include p-way interactions. This potentially leads to a 

very complicated model with extremely high computational costs. In practice, an m-way 

interaction model should suffice for high dimensional neuroimaging applications, where m 

<< p. We limit our attention to two-way interactions, e.g., the covariance between Xi and Xj 

for 1 ≤ i, j ≤ p, which should be sufficient to construct brain networks of interest.

Suppose that we observe the number of foci in p regions, denoted Xk = (X1,k, …, Xp,k)′ for 

each contrast k = 1, …, n. We assume that Xk follows a multivariate Poisson distribution 

with parameters λ= (λij)1≤i,j≤p. Extending (3), we have

(8)

and Yk= (Yij,k)1≤i≤j≤p is a collection of independent Poisson random variables, where each 

Yij,k follows a Poisson distribution with parameter λij. Also, each Xi,k marginally follows a 

Poisson distribution with parameter . The observed number of foci in region i, Xi,k 

Xue et al. Page 6

Biometrics. Author manuscript; available in PMC 2015 December 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



can be decomposed into p parts: Yii,k, the number of (singular) localized activations in region 

i, and {Yij,k}j≠i, the number of co-activations in region i and each of the remaining regions. 

We have symmetry in covariance parameters, i.e., λij = λji, as well as in the number of co-

activations between regions i and j, and between regions j and i, i.e., Yij,k = Yji,k.

To incorporate sparsity in the covariance structure of the brain network, we utilize the 

following penalized observed log-likelihood:

(9)

Similar to the bivariate model, we compute the complete data likelihood for ( , Xk), 

where  contains all the information of co-activations patterns. 

Specifically, we consider the following penalized complete data negative log-likelihood

(10)

To minimize the observed negative log-likelihood (9) using the EM algorithm, we calculate 

the conditional expectation of each Yij,k given the observed data and current estimates of the 

unknown parameters. Note that the conditional probability of Yij,k given the observed data 

only depends on Xi,k and Xj,k, i.e., E(Yij,k|Xk; λ)) = E(Yij,k|Xi,k, Xj,k; λ). Given the initial value 

λ(0), in the (t + 1)th step, for t = 0, …, T − 1, the procedure proceeds as follows:

• E-step, for i = 1, …, p, j = i + 1, …, p, compute

(11)

• M-step, update the estimates by

(12)

The joint probability function P (Yij,k, Xi,k, Xj,k) in (11) is derived in Web Appendix C. Note 

that the penalty term shrinks some covariance estimates exactly to zero and others to very 

small (near zero) values so that co-activations are sparsely detected. We declare that two 

regions are not connected if the estimated λij is near zero. In practice, we use 10−3 as the 

threshold, which on average, corresponds to fewer than one pair of co-activating foci 

reported on the two regions across 1000 independent studies.
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2.3 Tuning Parameter

We consider the predictive log-likelihood as the criterion to determine the optimal value of 

the tuning parameter θ. In our upcoming simulation studies, we also examine the mean-

squared error as a supplementary tool to verify our findings. Suppose we have two sets of 

data: the training data for parameter estimations and the testing data for validations, denoted 

as Xtrain and Xtest, respectively. The estimate of λij derived from the EM algorithm, given θ, 

using the training dataset Xtrain is denoted by . The predictive log-likelihood evaluated 

at  is defined as:

(13)

For a detailed expression, please refer to Web Appendix D.

We select the value of θ that yields the maximum predictive log-likelihood using two 

independent grid searches, including coarser grids and finer grids over a specified range. We 

use five-fold cross validation to optimize θ in the simulation studies and ten-fold cross 

validation in the data application to achieve the balance in training fitting and prediction 

error between smaller and larger dataset. In particular, five-fold was chosen in the 

simulation studies mainly due to the relatively low computational costs, while ten-fold was 

preferred in the analysis of our emotion dataset to ensure a sufficiently large training set to 

accommodate the fairly small sample. To verify the findings from the predictive log-

likelihood, we also optimize θ in the simulation studies by minimizing the mean-squared 

error (MSE) over a specified grid, with the MSE defined as

(14)

In our data application, we only use the predictive log-likelihood for optimizing the tuning 

parameter, since the MSE depends on the true value of λ. In Section 3.2.4, we check the 

accuracy of the predictive log-likelihood method by demonstrating that it yields results that 

are very close to those based on the MSE criterion using simulated data.

2.4 Statistical Testing

In order to make valid inference on co-activation patterns between regions and the 

associated functional network, we construct two permutation tests: Test I focuses on 

detecting the existence of connections for a set of region pairs, and Test II focuses a 

particular network. We utilize the penalized likelihood approach developed in Section 2.2 to 

determine a set of region pairs for Test I and a particular brain network for Test II. However, 

the two tests are both built upon a standard likelihood, without penalization. Specifically, we 

first compute the MLE of λij without shrinkage, denoted . We create a set of 

permutation samples by permuting the contrast labels for each region i. We compute the 

estimated λij for each region pair i and j from the permuted datasets, denoted , to 
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obtain a simulated null distribution of , given that there is no connection between regions i 

and j. Then we calculate the uncorrected p-value for each region pair i and j, which equals 

the proportion of  that are greater than . This p-value reflects evidence against 

the null hypothesis of Test I H0 : λij = 0 versus the alternative that Ha : λij > 0. We apply the 

false discovery rate (FDR) approach by Benjamini and Hochberg (1995) to correct for 

multiple comparisons for inferences about λij.

Based on , we build a functional network, denoted by Φ, whose significance can be 

tested by Test II. Specifically, we consider the following hypothesis for network 

identification: H0: λij = 0, ∀{ij} ∈ Φ vs. Ha: ∃{ij} ∈ Φ s.t. λij > 0. With a similar permutation 

procedure, the p-value for the network identification equals the proportion of , estimated 

from the permuted datasets, that are greater than the corresponding  for each pair of i 

and j.

2.5 Graph Measures of the Network

To furgher describe properties of a discovered brain network, we assess topological 

properties by performing graph analyses using a set of measures, commonly referred to as 

graph metrics (not to be confused with our graphical model). Suppose each network is 

composed of s nodes and t edges, which represent s brain regions and t co-activation 

connections, respectively. Several metrics have been developed to describe the relationships 

between nodes. For example, the clustering coefficient C measures the average likelihood of 

connecting neighbors. For each node i, the clustering coefficient is defined as Ci = 2Ei/ki(ki 

− 1), where ki is the degree of node i and Ei is the number of direct links connecting 

neighbors of node i. The path length L is the average minimum number of connections to 

link two nodes. Network topology is described as a small-world network if compared to a 

similar random network, the small-world index σ = (C/Crandom)/(L/Lrandom) > 1 (Watts and 

Strogatz, 1998; Humphries et al., 2006). Here, a similar random network is defined as a 

network with the same number of nodes, the same number of edges, and the same degree 

distribution (Simpson et al., 2013). Examples of small-world networks include road maps, 

food chains, and social influence network, in which most nodes can be connected to others 

by a small number of connections. We conduct statistical testing on the small-worldness 

property of an identified functional network using permutation methods, specifically 

addressing the hypotheses: H0: σ ≤ 1 vs. Ha : σ > 1.

Hubs play a central role in a network since they serve as the common connections to other 

nodes. We define hubs as nodes with high degree (D). The degree of a node i is the number 

of times node i is connected to other nodes (Freeman, 1977). We examine the high-degree 

nodes, i.e., the nodes with a degree or centrality at least one standard deviation above the 

network mean, in the network (Sporns et al., 2007).
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3. Results

3.1 Identifying Functional Co-activation Patterns in Neuroimaging Emotion Studies

We apply our proposed method to a dataset consisting of 437 contrasts from 162 studies 

(Kober et al., 2008). Each contrast is associated with one of seven emotion categories (sad, 

happy, anger, fear, disgust, surprise and affective). We use the reported coordinates of 

activation for each contrast to assign the contrast to a specific brain region. The number of 

reported points in each region is used as the data for our model. Approximately 6 activated 

coordinates are reported for each contrast, on average. We use the GlaxoSmithKline Clinical 

Imaging Centre (CIC) (Tziortzi et al., 2011) brain atlas based on the Harvard-Oxford atlas 

(Makris et al., 2006) and consider 19 regions of interest (ROIs) related to emotion 

processing, yielding a 19 × 437 data matrix and 171 region pairs. The objectives of this 

study include estimating the co-activation patterns and the corresponding functional network 

for emotion as a whole (as an illustration), performing statistical testing for the connections 

between regions, and characterizing the identified brain network.

The dorsolateral prefrontal cortex (DLFC) is the most frequently reported region across 

studies, with a 0.500 probability of reported activation (217 of 437 contrasts), and the right 

globus pallidus (GP_R) is reported the least across studies, with a 0.007 probability of 

reported activation (3 out of 437 contrasts). On average, each region is found to be 

associated with the neural processing of emotions with probability 0.140 (61 times out of 

437 contrasts).

We perform cross validation to choose the value of θ that yields the largest predictive 

likelihoods, and we estimate the covariance parameters based on the selected θ. Following 

the steps described in section 2.4, we identify the functional network and perform statistical 

testing on the network and marginal distributions of co-activations between regions. Our 

method detects an emotional processing network including 17 ROIs with 79 connections.

We find strong functional co-activation patterns within the limbic system, the basal ganglia 

and other frequently reported emotion related brain regions, as shown in Figure 2. The 

anterior cingulate cortex (ACC) is thought to be involved in reward and other diverse 

affective/motivational processes. Our analysis reveals that it is functionally connected to 11 

other regions in the identified network. Among the 6 region pairs with the highest 

covariance estimates, ACC appears 4 times, while the other two region pairs are bilateral 

homologues of the same structure. For example, ACC is functionally connected with 

orbitofrontal cortex (OFC), which is one of the major centers for affective processing 

( , p < 0.005). Strong co-activation is also identified between ACC and the 

striatum (Str) ( , p < 0.005); ACC and the thalamus (Thal) ( , p < 0.005), 

as well as ACC and the frontal operculum (frOP) ( , p < 0.005). Almost all of the 

marginal connections shown in Figure 2 are significant after an FDR correction (p < 0.005), 

and the network is significant as well (p < 0.005). The heat map depicting the estimated 

covariance matrix is available in Web Appendix E.
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We also examine graph properties of the emotion processing network. The clustering 

coefficient of the identified network is C = 0.710, and the path length is L = 1.129. The 

corresponding small-world index  is significantly greater than 1 (p < 0.005), which 

indicates that the identified network has properties which are consistent with a small-world 

network compared to the average of 1000 random networks (Crandom = 0.693, Lrandom = 

1.131). We use degree and centrality measures to identify the network hubs. We find several 

regions that play important roles in the emotion processing network, e.g., the right insular 

(Ins_R) (D=14), Thalamus (Thal) (D=14), the left amygdala (Amy_L) (D=11) and the 

medial frontal cortex (MFC) (D=12). Ins, Thalamus and the amygdala are among the most 

reported emotion-related regions, and the medial frontal cortex is involved in cognitive 

control and related processes in a variety of settings and may reflect some of the cognitive 

“ingredients” of the emotion generation process or, alternatively, may play a more direct 

role in the generation of emotional feelings.

We further examine subnetworks separately for each emotion. We focus on negative 

emotions, due to the restricted number of studies and contrasts involving positive emotions. 

For all the region pairs within the identified network, we count the number of times that both 

regions have at least one peak activation coordinate reported for particular emotions. We 

expect to see more sparse networks for distinct emotions relative to the network containing 

all emotions (see Figure 3). The region pairs with top frequencies for anger, disgust, fear, 

and sadness appear in Table 1. Within each subnetwork, we focus on the pair that co-

activates most and find that some of the emotions share co-activation patterns. For instance, 

DLFC and MFC, which are involved in cognitive control, are identified by anger and 

sadness emotions. OFC and ACC are found to show strong co-activations in anger and 

disgust, indicating that these two emotions may stimulate similar neural activity. In addition, 

a bilateral co-activation in the amygdala is detected in fear. The subnetwork analysis shows 

that although different types of emotions have their own contributions to the collective 

affective processing network, similar co-activation patterns may underlie distinct emotions.

3.2 Simulation Studies

We conduct simulation studies to evaluate estimation accuracy for our model, to assess two 

approaches for selecting the optimal tuning parameter θ, and to examine the impact of 

different values of θ on the resulting network. We generate two simulation datasets for our 

assessments.

3.2.1 Simulated Datasets

Dataset 1: The first simulation setting includes three regions and six non-zero parameters. 

Specifically, we let

(15)

We generate a total of 300 datasets, and for each simulation, we draw 100 bootstrap samples 

to evaluate estimation accuracy.
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Dataset 2: The second simulation setting builds a network consisting of eight regions. We 

assume the existence of co-activations for 8 of the 28 region pairs. Specifically, we set co-

activations for the following region pairs: 1 and 2 (λ12 = 3), 1 and 5 (λ15 = 4), 1 and 6 (λ16 = 

2), 2 and 7 (λ27 = 2), 3 and 6 (λ36 = 3), 4 and 8 (λ48 = 4), 5 and 7 (λ57 = 5), and 7 and 8 (λ78 

= 1). We generate 500 datasets for this setting.

3.2.2 Estimation Accuracy—First, we evaluate accuracy when θ = 0. Using simulated 

dataset 1, we estimate the six non-zero parameters λij by applying our penalized multivariate 

Poisson model, we calculate the variance of each parameter via bootstrap resampling, and 

we examine the estimated coverage rates. Table 2 shows the average bias, with the 

percentage change in parentheses, and the coverage rate of the estimation from 300 

simulations. The average bias is 0.008 with an average of 0.46% change over six 

parameters. Also the average coverage rate is 94.17%. These results indicate that our 

method accurately estimates the parameters of interest.

We compare our proposed model to the sample covariance between Xi,k and Xj,k, which is a 

moment estimate of λij. The results in Table 2 indicate that our penalized multivariate 

Poisson model substantially improves the performance by decreasing the biases (0.008 vs. 

0.141) with percentage changes (0.46% vs. 7.9%) and increasing the coverage rates (94.17% 

vs. 92.67%).

3.2.3 Impact of θ on Networks—We use simulated dataset 2 to examine the impact of θ 

on the number of connections in the network. We consider different values of the penalty 

term θ on a natural log scale ranging from −1 to 6, which corresponds to θ ranging from 0.37 

to 403. We set λij = 0, if the estimated value is below 10−3. Generally, as θ increases, the 

number of zeros also increases as shown in Figure 4(A), the biases increase, and the 

coverage rates decrease. When θ varies within a small range, the change on the number of 

zero connections is small. As θ is close to 200, all the connections shrink to zero, revealing 

the impact of the penalty term on network estimation.

3.2.4 The Choice of θ—We consider the same brain network described in the second 

simulation setting to evaluate the predictive log-likelihood from (13) and the mean-squared 

error approaches to choose the optimal tuning parameter θ. From coarse to finer parcellation 

of θ, we find that θ = 3 yields the largest average predictive log-likelihood −12.039 from 

five-fold cross validation. The smallest MSE, which equals to 0.5497, is achieved when θ = 

2.8. We note that when θ varies from 2.0 to 3.6, the difference between the calculated MSE 

and smallest MSE is less than 0.01. Figure 4(B) shows the trend of the predictive log-

likelihood and of the MSE within a small range of values for θ, which reveals that our 

proposed cross-validation generally succeeds in identifying θ near the MSE-minimizing 

value.

4. Discussion

We propose a Poisson graphical model to identify functional co-activation patterns and 

produce undirected brain networks in functional neuroimaging studies. Our method jointly 

models the region-level numbers of foci that are reported by different independently 
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performed studies. The estimated sparse covariance matrix between regions is used to 

construct an undirected brain network associated with a particular brain function. We also 

perform a permutation test to assess the significance of the functional connectivity between 

regions. We extend the original multivariate Poisson model by including a penalty term to 

account for sparsity of the brain network and perform estimation using the EM algorithm. 

The simulation studies show that our method achieves nearly the nominal coverage rate. We 

select the shrinkage parameter by optimizing the predictive log-likelihood and the MSE. The 

results show that the shrinkage method produces more accurate estimates of the covariance 

and reduces the computation time. We show that the predictive log-likelihood and MSE 

converge to a similar optimal value in our simulation studies.

Combining the results reported across different brain imaging studies increases the accuracy 

and power to detect co-activation patterns compared to single analyses. Using the regional 

foci counts, our method provides a systematic framework to estimate the co-activation 

patterns, which can be employed to test specific relationships between brain regions of 

interest or to establish groups of contiguous voxels that show similar functional 

characteristics and may be treated as prior information in the future studies. Of note, our 

method is quite different from the meta-analytic connectivity mapping (MACM, Robinson 

et al., 2010) in that the input data of the two methods are quite different. Our method 

directly models the regional foci count across studies to build up the co-activation brain 

network, while the MACM proceeds by creating an activation likelihood estimation map and 

depends on the choice of seed voxel/region.

One limitation of our model is that it is based on a pre-defined parcellation of the brain 

(Harvard-Oxford atlas, Makris et al., 2006). This parcellation is widely used in the 

neuroscience community and, specifically, in a range of neuroimaging analyses for 

functional networks. One extension would be considering higher order interactions (beyond 

two-way interactions), which maybe an important aspect of more fully understanding brain 

networks. Our analysis of 162 functional neuroimaging emotion studies uses foci data 

reported from different studies. The studies, however, may have different imaging 

modalities, sample sizes, and criteria and thresholds for testing statistical significance. To 

obtain a set of standardized count data, we can consider a Poisson covariance regression 

model estimating the co-activations adjusted for the significance levels and other covariates, 

which could increase the flexibility of our proposed method.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(A): Pipeline of analyzing the fMRI time series in a single functional neuroimaging study. 

(B): Foci collected from different studies. They are summarized into the regional foci count 

which are the observed data in our model.
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Figure 2. 
Three different views of the functional network identified from 162 functional neuroimaging 

studies with 437 contrasts. 17 ROIs are included in the network. The size of each node in the 

graphic display represents the degree of the node. ATP – Anterior Temporal Pole, para-

HCMP – Parahippocampal, HCMP – Hippocampus, DLFC – DorsoLateral Frontal Cortex, 

PCC – Posterior Cingulate Cortex.
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Figure 3. 
Functional networks identified for particular emotions from 162 functional neuroimaging 

studies with 437 contrasts. The negative emotions considered include anger, disgust, fear, 

and sadness.
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Figure 4. 
(A) Change of the average number of zeros detected from 100 simulations vs. ln(θ). The 

horizontal line indicates the true number of zeros. (B) Relationship between the predictive 

log-likelihood and θ (left); the predictive log-likelihood achieves the largest value when θ = 

3. The relationship between the mean-squared error and θ (right); the MSE achieves smallest 

value when θ = 2.8.
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Table 1

Region pairs with strong co-activations for anger, disgust, fear and sadness. The frequency represents the 

number of contrasts that have at least one focus in both regions. The percentage refers to the proportion of the 

contrasts in the corresponding emotion group

Emotion Region Region Frequency (%)

Anger
(26 contrasts)

ATP_L
DLFC
OFC

Amy_L
MFC
ACC

3 (11.5%)
3 (11.5%)
3 (11.5%)

Disgust
(44 contrasts)

OFC
Ins_R

ACC
OFC

8 (18.2%)
5 (11.4%)

Fear
(68 contrasts)

Amy_L
ACC

Amy_R
Str

6 (8.8%)
5 (7.4%)

Sadness
(45 contrasts)

DLFC
MFC

MFC
Thal

10 (22.2%)
6 (13.3%)
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