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Abstract—The subcellular locations of proteins are important functional annotations. An effective and reliable subcellular localization

method is necessary for proteomics research. This paper introduces a new method—PairProSVM—to automatically predict the

subcellular locations of proteins. The profiles of all protein sequences in the training set are constructed by PSI-BLAST, and the

pairwise profile alignment scores are used to form feature vectors for training a support vector machine (SVM) classifier. It was found

that PairProSVM outperforms the methods that are based on sequence alignment and amino acid compositions even if most of the

homologous sequences have been removed. PairProSVM was evaluated on Huang and Li’s and Gardy et al.’s protein data sets. The

overall accuracies on these data sets reach 75.3 percent and 91.9 percent, respectively, which are higher than or comparable to those

obtained by sequence alignment and composition-based methods.

Index Terms—Protein subcellular localization, sequence alignment, profile alignment, kernel methods, support vector machines.

Ç

1 INTRODUCTION

THE subcellular locations of proteins have a significant
influence on their functional characteristics, interaction

partners, and potential roles in the cellular machinery. The
determination of subcellular localization via experimental
processes is often time consuming and laborious; therefore,
a number of in silico subcellular localization methods have
been proposed. These methods can be generally divided
into the following categories:

1. Sorting-signal-based methods. This group of methods
locates the proteins based on the existence of sorting
signals [1]. PSORT, proposed by Nakai and Kanehisa
in 1991 [2], [3], is the earliest predictor that uses
sorting signals. Subsequent approaches use signal
peptides, mitochondrial targeting peptides, and
chloroplast transit peptides [4], [5], [6]. More
recently, Horton et al. [7] have proposed a sorting-
signal-composition-based method called WoLF
PSORT for subcellular localization. WoLF is essen-
tially a feature selector that selects features derived
from PSORT, iPSORT, the amino acid content, and
the sequence length. Horton et al. demonstrated that
WoLF PSORT can be easily combined with BLAST
[8] for subcellular localization.

2. Composition-based methods. This category studies the
relationship between the subcellular locations and
1) amino acid compositions [9], [10], [11], [12],
2) amino acid pair compositions (dipeptide) [13],
[14], [15], and 3) gapped amino acid pair composi-
tions [14]. The concept of amino acid composition
has been extended to pseudo amino acid composi-
tions [16], from which information relevant to
subcellular locations is extracted through a set of
sequence-order-correlated factors and biochemical
properties.

3. Functional-domain-based methods. This category looks
at the correlation between the function of a protein
and its subcellular location. Specifically, a protein is
represented as a point in a high-dimensional space
in which each basis is defined by one of the
functional domains obtained from the functional
domain database, the gene ontology database, or
their combination [17].

4. Homology-based methods. This category is based on
the notion that homologous sequences are also likely
to have the same subcellular location. This property
was first studied by Nair and Rost in 2002 [18], and
subsequently, a number of methods based on this
property have been proposed. For example, Pro-
teome Analyst (PA) [19] uses the presence or absence
of the tokens from certain fields of the homologous
sequences in the SWISSPROT database as a means to
compute features for classification. In the work of
Kim et al. [20], an unknown protein sequence is
aligned with every training sequence (with known
subcellular locations) to create a feature vector for
classification.

5. Fusion-based methods. This group integrates signal
peptide information or whole sequence information
with other features. For example, Gardy et al. [21]
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developed PSORT-B that integrates amino acid
compositions, similarity to proteins of known loca-
tions, signal peptides, transmembrane alpha-helices,
and motifs corresponding to specific localizations.
Bhasin and Raghava [22] and Garg et al. [23]
predicted subcellular locations by fusing amino acid
compositions, the composition of physicochemical
properties, dipeptide compositions, residue couples,
and PSI-BLAST search.

This paper applies pairwise profile alignment, which has
been used successfully in remote homology detection [24],
[25], [26], to predict protein subcellular locations. A profile
is a matrix in which elements in a column specify the
frequency of each amino acid that appears in that sequence
position. In this work, the profile of a query sequence is
generated by PSI-BLAST [27]; the resulting profile is then
aligned with the profile of every training sequence to obtain
a vector of alignment scores; finally, linear support vector
machines (SVMs) are used to classify the vector. Our
experimental results demonstrate the advantage of this
vectorization scheme and the benefit of using profile
alignment as compared to sequence alignment. This paper
also serves to answer the following question: Can homol-
ogy-based methods outperform nonhomology-based meth-
ods in subcellular localization, even on nonredundant data
sets? The results in this paper suggest that the answer is yes.

The paper is organized as follows: Section 2 details the
procedures of sequence alignment and profile alignment. It
also outlines the vectorization process and the one-versus-
rest SVM classifier based on the alignment scores. In
Section 3, experimental evaluations based on two protein
data sets are reported, and the performance between profile
alignment, sequence alignment, and composition-based
methods are compared. Finally, concluding remarks are
drawn in Section 4.

2 KERNEL METHODS FOR

SEQUENCE CLASSIFICATION

2.1 Sequence Alignment Kernels

Pairwise sequence alignment has been widely used for
computing the similarity between two DNA or two protein
sequences. It finds the best match between two sequences
by inserting some gaps into proper positions of the two
sequences. Denote

D ¼ fSð1Þ; . . . ; SðiÞ; . . . ; SðjÞ; . . . ; SðT Þg

as a training set containing T sequences. Here, the
ith protein sequence is denoted as

SðiÞ ¼ SðiÞ1 ; S
ðiÞ
2 ; . . . ; SðiÞni ; 1 � i � T;

where S
ðiÞ
k 2 A, which is the set of 20 amino acid symbols,

and ni is the length of SðiÞ. Using the BLOSUM62
substitution matrix [28], a set of similarity scores
"0ðSðiÞu ; SðjÞv Þ between position u of SðiÞ and position v of
SðjÞ can be obtained.1 Then, based on these scores and the
Smith-Waterman alignment algorithm [29] with affine gap

extension [30], a sequence alignment score �0ðSðiÞ; SðjÞÞ can
be obtained. Then, borrowing the idea from Shpaer et al.
[31], we obtain the following normalized alignment score:

�0ðSðiÞ; SðjÞÞ ¼ �0ðSðiÞ; SðjÞÞ
lnðniÞ lnðnjÞ

; ð1Þ

where ni and nj are the length of the ith and jth sequences.
The normalization makes the alignment scores of unrelated
sequences less dependent on the sequence length [31], thus
allowing us to compare the alignment scores arising from
sequences of different lengths. To facilitate SVM classifica-
tion, we use a linear kernel of the form:

K0ðSðiÞ; SðjÞÞ ¼
XT
t¼1

�0ðSðiÞ; SðtÞÞ�0ðSðjÞ; SðtÞÞ: ð2Þ

Note that this kernel maps the variable-length sequence SðiÞ

to a vector of alignment scores:

��0ðiÞ ¼ ½�0ðSðiÞ; Sð1ÞÞ . . . �0ðSðiÞ; SðT ÞÞ�T:

By aligning SðiÞ with each of the sequences in the training
set. A kernel inner product between SðiÞ and SðjÞ can then
be naturally obtained as h��0ðiÞ; ��0ðjÞi. This leads to a class of
algorithms referred to as SVM-pairwise, adopted in [20]
and [32].

The sensitivity of detecting subtle homogenous segments
can be improved by replacing pairwise sequence alignment
with pairwise profile alignment. In Section 2.2, we will use
the similarity scores of pairwise profile alignment to
generate kernel matrices for SVM classification.

2.2 Profile Alignment Kernels

Following [33], here, we use a protein sequence (called
query sequence) as a seed to search and align homogenous
sequences from SWISSPROT 46.0 [34] using the PSI-BLAST
program [27] with parameters h and j set to 0.001 and 3,
respectively. The homolog information pertaining to the
aligned sequences can be represented by two matrices
(profiles): a position-specific scoring matrix (PSSM) and a
position-specific frequency matrix (PSFM). Both PSSM and
PSFM have 20 rows and L columns, where L is the number
of amino acids in the query sequence. Each column of a
PSSM represents the log likelihood of the residue substitu-
tions at the corresponding positions in the query sequence.
The ði; jÞth entry of the matrix represents the chance of the
amino acid in the jth position of the query sequence being
mutated to amino acid type i during the evolution process.
The PSFM contains the weighted observation frequencies of
each position of the aligned sequences. Specifically, the
ði; jÞth entry of PSFM represents the possibility of having
amino acid type i in position j of the query sequence.

Let us denote the operation of PSI-BLAST search
given the query sequence SðiÞ of length ni as

�ðiÞ � �ðSðiÞÞ : SðiÞ�!fPðiÞ;QðiÞg; ð3Þ

where PðiÞ and QðiÞ are the PSSM and PSFM of SðiÞ,
respectively. Using the profile alignment algorithm speci-
fied in the Appendix, we obtain the profile alignment scores
�ð�ðSðiÞÞ; �ðSðjÞÞÞ. Then, similar to sequence alignment, the
following normalized alignment scores are obtained:
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�ð�ðiÞ; �ðjÞÞ ¼ �ð�ðS
ðiÞÞ; �ðSðjÞÞÞ

lnðniÞ lnðnjÞ
: ð4Þ

A linear kernel based on the normalized scores (4) is then
constructed for training SVM classifiers:

Kð�ðSðiÞÞ; �ðSðjÞÞÞ ¼
XT
t¼1

�ð�ðiÞ; �ðtÞÞ�ð�ðjÞ; �ðtÞÞ: ð5Þ

2.3 Multiclassification Using SVM

The multiclass problem can be solved by the one-versus-
rest approach. Specifically, for a C-class problem (here, C is
the number of subcellular locations), C independent SVM
classifiers are constructed. During prediction, given an
unknown protein sequence S, the output of the cth SVM is
computed as2

fcðSÞ ¼
X
i2Sc

yc;i�c;iKð�ðSðiÞÞ; �ðSÞÞ þ bc; ð6Þ

where Sc is a set composed of the indices of the support
vectors, yc;i 2 f�1;þ1g is the label of the ith training
sequence, and �c;i is the ith Lagrange multiplier of the
cth SVM. The predicted class of S is given by

yðSÞ ¼ arg max
c
fcðSÞ; c ¼ 1; . . . ; C:

In the following, we refer to the yðSÞ with kernel
Kð�ðSðiÞÞ; �ðSÞÞ as the pairwise profile alignment SVM
(or, simply, PairProSVM) and to the yðSÞ with kernel
K0ðSðiÞ; SÞ as the pairwise sequence alignment SVM
(PairSeqSVM).

The Spider Toolbox3 was used to implement the SVM
classifiers.

3 EXPERIMENTS AND RESULTS

3.1 Data Sets

Two data sets were used to evaluate the performance of the
proposed method. The first one is introduced by Huang and
Li [15]. This data set was created by selecting all eukaryotic
proteins with annotated subcellular locations from SWIS-
SPROT 41.0 and by setting the identity cutoff to 50 percent.
The data set comprises 3,572 proteins (622 cytoplasm,
1,188 nuclear, 424 mitochondria, 915 extracellular, 26 golgi
apparatus, 225 chloroplast, 45 endoplasmic reticulum,
7 cytoskeleton, 29 vacuole, 47 peroxisome, and 44 lysosome).
The second data set was prepared by Gardy et al. [21] in
2003. It contains 1,443 Gram-negative bacterial sequences
extracted from SWISS-PROT Release 40.29.

3.2 Performance Metric

Fivefold cross validation was used to evaluate the perfor-
mance of PairProSVM and PairSeqSVM. The performance
measures include the overall prediction accuracy (OA), the
accuracy for each subcellular location (Acc), and Matthew’s
correlation coefficient (MCC) [35]. MCC [35] can overcome
the shortcoming of accuracy on unbalanced data. For
example, a classifier predicting all samples as positive
cannot be regarded as a good classifier unless it can also

predict negative samples accurately. In this case, the
accuracy and MCC of the positive class are 100 percent
and 0 percent, respectively. Therefore, MCC is a better
measure for unbalanced classification.

Denote M 2 <C�C as the confusion matrix of the
prediction result, where C is the number of classes. Then,
Mi;j ð1 � i; j � CÞ represents the number of proteins that
actually belong to class i but are predicted as class j. We
further denote

pc ¼Mc;c; qc ¼
XC

i¼1;i 6¼c

XC
j¼1;j 6¼c

Mi;j;

rc ¼
XC

i¼1;i 6¼c
Mi;c; sc ¼

XC
j¼1;j6¼c

Mc;j;

ð7Þ

where c ð1 � c � CÞ is the index of a particular class. For
class c, pc is the number of true positives, qc is the number of
true negatives, rc is the number of false positives, and sc is
the number of false negatives. Based on the notations above,
the OA, the accuracy of class c ðAcccÞ, the MCC of class
c ðMCCcÞ, the overall MCC (OMCC), and the weighted
average MCC (WAMCC) are defined, respectively, as

OA ¼
PC

c¼1 Mc;cPC
i¼1

PC
j¼1 Mi;j

; ð8Þ

Accc ¼
Mc;cPC
j¼1 Mc;j

; ð9Þ

MCCc ¼
pcqc � rcscffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðpc þ scÞðpc þ rcÞðqc þ scÞðqc þ rcÞ
p ; ð10Þ

OMCC ¼ p̂ q̂ � r̂ŝffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp̂þ ŝÞðp̂þ r̂Þðq̂ þ ŝÞðq̂ þ r̂Þ

p ; ð11Þ

WAMCC ¼
XC
c¼1

pc þ sc
N

MCCc; ð12Þ

w h e r e N ¼
PC

c¼1 ðpc þ scÞ, p̂ ¼
PC

c¼1 pc, q̂ ¼
PC

c¼1 qc,
r̂ ¼

PC
c¼1 rc, and ŝ ¼

PC
c¼1 sc.

3.3 Results on Eukaryotic Proteins

The performance of Fuzzy K-NN [15], SubLoc [12],
PairSeqSVM ðK0Þ, and PairProSVM ðKÞ on Huang and Li’s
data set are shown in Table 1. The results of SubLoc were
obtained by submitting the sequences of the first four
classes in the data set to the SubLoc server (http://
www.bioinfo.tsinghua.edu.cn/SubLoc/). Because SubLoc
can only classify cytoplasm, nuclear, mitochondria, and
extracellular, only the results corresponding to the first four
classes are reported. The OA of PairProSVM and Pair-
SeqSVM reaches 75.3 percent and 71.8 percent, which are
significantly higher than that of Fuzzy K-NN and SubLoc.
In addition, the OA of PairProSVM is 3.5 percent higher
than that of PairSeqSVM. PairProSVM and PairSeqSVM
outperform Fuzzy K-NN in 8 out of 11 subcellular locations.
However, they perform poorly on golgi apparatus, cytos-
keleton, and vacuole. This is mainly due to the lack of data
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2. For sequence alignment, the kernel function becomes K0ðSðiÞ; SÞ in (2).
3. http://www.kyb.tuebingen.mpg.de/bs/people/spider/.



in these three classes in the data set (26, 7, and 29 sequences

only). PairProSVM also outperforms SubLoc in three out of

four classes, leading to a significantly higher OA.

3.4 Results on Prokaryotic Proteins

To investigate whether profile alignment is also appropriate

for predicting the subcellular localization of prokaryotic

proteins, we performed experiments on a prokaryotic data

set created by Gardy et al. [21]. The results of SubLoc [12],

PSORT-B 1.0 [21], PA [19], PSLpred [36], CELLO [37],

PairSeqSVM, and PairProSVM on this data set are shown in

Table 2. Again, the results of SubLoc were obtained by

presenting the sequences of the data set to SubLoc’s Web

server. The results suggest that the performance of

PairProSVM is comparable to that of PA and PSLpred and

is significantly better than that of PSORT-B and SubLoc.

Also, note that the performance difference between Pair-

SeqSVM and PairProSVM is only 1 percent, confirming that

remote homology seems to be more helpful for classifying

eukaryotic proteins, where over 3 percent difference was

achieved.

3.5 Results on Redundancy-Removed Data Sets

Huang and Li’s data set covers 11 location sites, allowing a
sequence identity of up to 50 percent. To mitigate homology
bias, we constructed a series of redundancy-removed data
sets by eliminating the most similar sequences. Specifically,
any pairs of sequences in a redundancy-removed data set
should not have an identity higher than �, where � is a
filtering threshold. The NCBI Blastclust program was used
to implement the filtering process (blastclust -L 0 -S �).
Different values of �, from 15 percent to 45 percent with
intervals of 5 percent for Huang and Li’s data set, were
tested. Note that the number of proteins in each subcellular
location becomes smaller when the threshold decreases. The
numbers of proteins in each subcellular location at 50 percent
and 15 percent sequence identities are shown in Table 1.

Fig. 1 shows the OA of PairProSVM ðKÞ and Pair-
SeqSVM ðK0Þ in the redundancy-removed data sets with
different values of � (� ¼ 50 percent means that the original
data set was used). The result shows that the accuracy of
both methods decreases when the sequences become less
similar to each other. However, the rate of performance
degradation is more dramatic in PairSeqSVM than in
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TABLE 1
Comparison of Fuzzy K-NN, SubLoc, PairSeqSVM, and PairProSVM on Huang and Li’s Data Set

at 50 Percent and 15 Percent Sequence Identities

Acc: Accuracy; MCC: Matthew’s correlation coefficient. For SubLoc, the OA is based on the first four classes.

TABLE 2
Accuracies of SubLoc, PSORT-B, PA, PSLpred, CELLO, PairSeqSVM ðK0Þ, and PairProSVM ðKÞ in Gardy et al.’s Data Set



PairProSVM. In particular, when the filtering threshold
drops from 50 percent to 15 percent, the accuracy of
PairProSVM drops from 75.3 percent to 66.1 percent (a
12 percent reduction), whereas the accuracy of PairSeqSVM
drops from 71.8 percent to 60.6 percent (a 16 percent
reduction). This suggests that PairProSVM is less sensitive
to the similarity among the training sequences than
PairSeqSVM.

3.6 Computational Complexity

The computation in PairProSVM can be divided into three
phases: 1) profile generation, 2) profile alignment, and
3) SVM training and classification. Among the three phases,
the alignment process is the most computationally inten-
sive, which amounts to 94 percent of the total computation
time. We note that PairProSVM is more computationally
intensive than PairSeqSVM. In particular, the profile
alignment time is about three times that of the sequence
alignment time. PairProSVM also requires extra computa-
tion time to produce the profiles using PSI-BLAST, which
amounts to about 4 percent of the total computation time.

In the training phase, each entry of the kernel matrix (both
K0 and K) requires OðninjÞ computation time, where ni and
nj are the lengths of the ith and jth sequences in the training
set, respectively. Therefore, the computational complexity of
the whole kernel matrix is Oð

P
i

P
j ninjÞ ¼ OðL2Þ, where L

is the sum of the length of all training sequences. In the
prediction phase, an unknown sequence (profile) of
n residues needs to be aligned with all training sequences
(profiles) to produce a feature vector for SVM classification,
which requires Oð

P
j nnjÞ ¼ OðnLÞ operations. Assuming

that there are V support vectors in the SVM, the overall
complexity in the prediction phase is OðnLþ V T Þ, where T
is the number of training sequences.

While alignment-based methods are more computation-
ally intensive than composition-based methods, we strongly
believe that accuracy is by far much more important than
speed in subcellular localization, because the latter can be
easily solved by the rapid improvement in CPU perfor-
mance. Moreover, recent advances in feature selection
methods for pairwise scoring matrices [38] can also help
alleviate this computation limitation.

4 CONCLUSIONS

This paper applies SVMs with profile alignment kernels to
predict proteins’ subcellular locations. Profiles are calcu-
lated by searching the SWISSPROT database using PSI-
BLAST. Then, the scores of sequence and profile alignment
are computed, which in turn are used to construct the
kernels of an SVM classifier. Evaluations on eukaryotic and
prokaryotic data sets show that profile-based methods are
superior to sequence-alignment-based methods and com-
position-based methods. This paper also addresses a
concern about homology-based methods raised in [39]:
proteins with high sequence homology do not necessarily
share the same localization. Results of this paper, however,
show that if rich localization information can be extracted
from homologous sequences (such as profiles), homology-
based methods can outperform nonhomology-based meth-
ods significantly.

The kernel matrices used by PairProSVM and other
supplementary materials can be found in http://www.eie.
polyu.edu.hk/~mwmak/BSIG/PairProSVM.htm.

APPENDIX

Let us denote the operation of PSI-BLAST search given the
query sequence SðiÞ of length ni as

�ðiÞ � �ðSðiÞÞ : SðiÞ�!fPðiÞ;QðiÞg; ð13Þ

where

PðiÞ ¼ ½pðiÞ1 ;p
ðiÞ
2 ; . . . ;pðiÞni �;

QðiÞ ¼ ½qðiÞ1 ;q
ðiÞ
2 ; . . . ;qðiÞni �

are the PSSM and PSFM of SðiÞ, respectively. The elements
in pðiÞu and qðiÞv can be expressed as

pðiÞu ¼ ½p
ðiÞ
u;1; p

ðiÞ
u;2; . . . ; p

ðiÞ
u;20�

T; 1 � u � ni;

qðiÞv ¼ ½q
ðiÞ
v;1; q

ðiÞ
v;2; . . . ; q

ðiÞ
v;20�

T; 1 � v � ni:

Let us assume that we need to align the profiles of two

sequences SðiÞ and SðjÞ. Define partial matrices P̂ðiÞu ¼
½pðiÞ1 . . . pðiÞu � and Q̂ðjÞv ¼ ½q

ðjÞ
1 . . . qðjÞv � corresponding to SðiÞ

and SðjÞ, respectively. Define an ðni þ 1Þ � ðnj þ 1Þ matrix

M whose ðu; vÞth element Mðu; vÞ for u ¼ 1; . . . ; ni and v ¼
1; . . . ; nj represents the score of an optimal profile align-

ment between P̂ðiÞu and Q̂ðjÞv and between P̂ðjÞv and Q̂ðiÞu ,

given that the alignment ends with pðiÞu aligned to qðjÞv and

pðjÞv aligned to qðiÞu . The scoring function introduced in [25]

can be adopted to compute the similarity score between pðiÞu ,

qðjÞv , pðjÞv , and qðiÞu as follows:

"ði;jÞu;v ¼
X20

h¼1

p
ðiÞ
u;hq

ðjÞ
v;h þ p

ðjÞ
v;hq

ðiÞ
u;h

� �
: ð14Þ

Define an ni � nj matrix I whose ðu; vÞth element
represents the score of an optimal alignment, given that
the alignment ends with pðiÞu or qðiÞu aligned to a gap.
Similarly, define an ni � nj matrix J whose ðu; vÞth element
represents the score of an optimal alignment given that the
alignment ends with pðjÞv or qðjÞv aligned to a gap.
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Fig. 1. The relationship between the filtering threshold � and the OA of

PairSeqSVM and PairProSVM on Huang and Li’s data sets.



With the above definitions, the profile alignment algo-

rithm is specified as follows [29]:

1. Initialize the accumulative score matrix M:

Mð0; 0Þ ¼ 0;

Mðu; 0Þ ¼ � gopen � ðu� 1Þgext;

Mð0; vÞ ¼ � gopen � ðv� 1Þgext;

where u ¼ 1; . . . ; ni, v ¼ 1; . . . ; nj, and gopen and gext

are two user-defined parameters representing the

gap opening penalty and gap extension penalty,

respectively.
2. Calculate Mðu; vÞ recursively as follows:

Mðu; vÞ ¼ max

0;
Mðu� 1; v� 1Þ þ "ði;jÞu;v ;

Iðu� 1; v� 1Þ þ "ði;jÞu;v ;

Jðu� 1; v� 1Þ þ "ði;jÞu;v ;

8>><
>>:

where

Iðu; vÞ ¼ max

0;

Mðu� 1; vÞ � gopen;

Iðu� 1; vÞ � gext;

8><
>:

Jðu; vÞ ¼ max

0;

Mðu; v� 1Þ � gopen;

Jðu; v� 1Þ � gext:

8><
>:

3. Obtain the profile alignment score of SðiÞ and SðjÞ as
follows:

�ð�ðSðiÞÞ; �ðSðjÞÞÞ ¼
maxfMðûi; v̂jÞ; Iðûi; v̂jÞ; Jðûi; v̂jÞg;

where ðûi; v̂jÞ is the position in M corresponding to

the maximum alignment score, i.e.,

ðûi; v̂jÞ ¼
arg max

1�u�ni; 1�v�nj
fMðu; vÞ; Iðu; vÞ; Jðu; vÞg:

In this work, the open gap ðgopenÞ and extension gap

penalties ðgextÞ were set to 11 and 1, respectively.
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