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SUMMARY

In many high-dimensional microarray classification problems, an important task is to identify subsets
of genes that best discriminate the classes. Nevertheless, existing gene selection methods for microarray
classification cannot identify which classes are discriminable by these selected genes. In this paper, we
propose an improved linear discriminant analysis (LDA) method that simultaneously selects important
genes and identifies the discriminable classes. Specifically, a pairwise fusion penalty for LDA was used
to shrink the differences of the class centroids in pairs for each variable and fuse the centroids of indis-
criminable classes altogether. The numerical results in analyzing 2 gene expression profiles demonstrate
the proposed approach help improve the interpretation of important genes in microarray classification
problems.
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1. INTRODUCTION

It has been considered important to predict the clinical class of a sample based on its gene expression pro-
files from microarray experiments. However, this is a challenging task due to the huge number of genes.
Linear discriminant analysis (LDA), originally introduced byFisher(1936), is a classification technique
which has been successfully applied in microarray classification problems (Tibshiraniand others,2002;
Guo and others, 2007;Tai and Pan, 2007;Wang and Zhu, 2007, and the references therein). LDA as-
sumes that the observations in each class come from a specific Gaussian-distributed component, and it
also assumes that these Gaussian components have different means but equal covariance matrices. In a
prediction procedure, the label of a new observation is determined by the Bayes rule (Hastieand others,
2001). LDA performs well for low-dimensional data. In particular, it has some nice properties, such as
the robustness to deviations from model assumptions and the almost-“Bayes” optimality (Guoand others,
2007). Nevertheless, the performance of LDA is far from optimal in high-dimensional cases, especially
when the number of the variables is much larger than the sample size (p � n) (Di Pillo, 1976,1977).
There are 2 major limitations here. First, the sample covariance matrix is singular and cannot be inverted
when p > n. To address this problem,Friedman(1977) proposed a method to regularize the common
covariance matrix of the Gaussian components in LDA. Second, it is a common assumption that only a
small proportion of variables contribute to classification in high-dimensional data. Nevertheless, it is chal-
lenging to identify such important variables in practice.Tibshiraniand others(2002) proposed a modified
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LDA, namely shrunken centroids estimator. By assuming the diagonal shape of the covariance matrix, it
shrinks the class centroids toward the global centroid by using soft thresholding and thus removes unim-
portant variables (i.e. the centroids of all classes are shrunken together) from the model.Wang and Zhu
(2007) reformulated the shrunken centroids estimator as a Lasso-type problem (Tibshirani, 1996) and
proposed 2 new penalties to improve the effectiveness of variable selection.Tai and Pan(2007) improves
the shrunken centroids estimator by incorporating group structures among the variables.Guoand others
(2007) extended the idea of shrunken centroids estimator to LDA with general covariance matrix.

In existing variable selection methods for multiclass LDA (Tibshiraniand others, 2002;Wang and
Zhu,2007), the important variables are those effectively discriminate at least 2 out of all classes. In many
real problems, however, people are also interested in identifying which specific classes can be discrimi-
nated by an important variable. Imagining, for example, a disease with 3 subtypes (denoted as types I, II,
and III). By observing the gene expression profiles, we may see that some genes can discriminate types
I and II but cannot discriminate types II and III; on the other hand, some other genes can discriminate
types II and III but cannot discriminate types I and II. Such scenarios often appear in high-dimensional
gene expression profiles, and thus it is necessary to identify these class-specific information. For this aim,
the paper proposes a penalized LDA method that simultaneously selects important variables and identi-
fies specific classes that can be discriminated by these variables. Specifically, a pairwise fusion penalty
was used in the proposed model to fuse the class centroids for each variable. Two classes are considered
indiscriminable if their class centroids are fused together. Moreover, if all class centroids associated with
a variable are fused, this variable is regarded as unimportant to all classes and removed from the model.

The remainder of the paper is organized as follows: Section2 introduces the methodology of proposed
method and discusses algorithmic issues. Section3 illustrates the performance of the proposed method
with 2 simulated examples, and Section4 applies this method to 2 microarray data sets, respectively.
Finally, some concluding remarks are drawn in Section5.

2. METHODOLOGY

2.1 High-dimensionalLDA

Suppose the data matrixX = (xi, j )n×p consistsof n observations andp variables. Without loss of
generality, we assumeX is centered along each column, that is,

∑n
i =1 xi, j = 0, 1 6 j 6 p. In a

K -class LDA problem, the observations in thekth class (16 k 6 K ) are assumed to be i.i.d. generated
from a Gaussian distribution with meanμμμk = (μk,1, . . . , μk,p) andthe common covariance matrix666.
In addition, it is a common assumption in high-dimensional settings that the covariance matrix is diagonal,
that is,666 = diag(σ2

1 , σ 2
2 , . . . , σ 2

p). This assumption significantly reduces the number of parameters to be
estimated and its advantages are theoretically justified byBickel and Levina(2004).

The parameters of high-dimensional LDA can be estimated by solving the following criterion:

min
μμμ,666

1

2

K∑

k=1

∑

i ∈Sk

p∑

j =1

[
(xi, j − μk, j )

2

σ 2
j

− logσ 2
j

]

, (2.1)

whereμμμ = (μμμ1, . . . , μμμK )T and Sk is the index set of thekth class. Let̂πk = nk/n be the estimate
of the prior of thekth class, whose sample size isnk. The prediction procedure is based on the Bayes
rule (Hastieand others,2001). Specifically, given the estimate(μ̂μμ, 6̂66) from (2.1), a new observation
x∗ = (x∗

1, . . . , x∗
p) is assigned to the class which achieves

arg max
16k6K

π̂kφ(x∗; μ̂μμk, 6̂66), (2.2)

whereφ is the density function ofp-variate Gaussian distribution.

 at E
rnst M

ayr L
ibrary of the M

useum
 C

om
p Z

oology, H
arvard U

niversity on M
arch 25, 2013

http://biostatistics.oxfordjournals.org/
D

ow
nloaded from

 

http://biostatistics.oxfordjournals.org/


Simultaneousvariable selection and class fusion 601

2.2 The pairwise fusion penalty

To fuse indiscriminable classes for each important variable, we use the following pairwise fusion penalty
to regularize criterion (2.1):

min
μμμ,666

1

2

K∑

k=1

∑

i ∈Sk

p∑

j =1

[
(xi, j − μk, j )

2

σ 2
j

− logσ 2
j

]

+ λ

p∑

j =1

∑

16k<k′6K

w
( j )
k,k′ |μk, j − μk′, j |, (2.3)

whereλ is a tuning parameter. The penalty aims at shrinking the differences between every pair of class
centroids for each variable. Similar to the scenario in Lasso (Tibshirani, 1996), thè 1-normin the penalty
shrinks some differences to be exactly zero, resulting in some class centroidsμ̂k, j ’s having identical
values. Ifμ̂k, j = μ̂k′, j , for some 16 k < k′ 6 K , then variablej cannot discriminate classk and
classk′, though it may be effective to discriminate other classes. Moreover, if all class centroids for some
variable are fused together, that is,μ̂1, j = μ̂2, j = ∙ ∙ ∙ = μ̂p, j , then this variable is considered unimportant
to the classification task and can be removed from the model. We borrow the idea fromZou (2006) and
define the adaptive weightsw( j )

k,k′ = |μ̃k, j − μ̃k′, j |−1, 1 6 k < k′ 6 K , 1 6 j 6 p, whereμ̃k, j is the
estimate ofμk, j from criterion (2.1). With these adaptive weights, the pairwise fusion penalty tends to
lightly fuse classesk andk′ (1 6 k < k′ 6 K ) if variable j is effective to discriminate them and heavily
fuses them otherwise. Note that the pairwise fusion penalty has been applied inGuoand others(2010) for
clustering purpose.

REMARK 2.1 It is of interest to compare the method defined in (2.3) with the`1-regularized high-
dimensional LDA as follows:

min
μμμ,666

1

2

K∑

k=1

∑

i ∈Sk

p∑

j =1

[
(xi, j − μk, j )

2

σ 2
j

− logσ 2
j

]

+ λ

p∑

j =1

K∑

k=1

ξk, j |μk, j |, (2.4)

whereξk, j ’s are adaptive weights defined asξk, j = 1/|μ̃k, j |. The`1-penaltyin (2.4) shrinks the individual
μk, j ’s toward zero (which is the global centroid of the entire centered data) and removes variablej from
the model if allμ̂k, j , 1 6 k 6 K , are set to zeros. However, it cannot correctly identify which specific
classes are discriminable by each important variable. FollowingWang and Zhu(2007), we can show that
(2.4) is actually equivalent to the shrunken centroids estimator (Tibshiraniand others, 2002) if we set
ξk, j =

√
1/nk − 1/n instead.For clarification, we denote the estimators defined by criterions (2.3) and

(2.4) as LDA-PF and LDA-L1, respectively.

2.3 Parameter estimation

Notice that criterion (2.3) can be decomposed intop individual minimization problems, where thej th
one is

min
μμμ( j ),666

1

2

K∑

k=1

∑

i ∈Sk

[
(xi, j − μk, j )

2

σ 2
j

− logσ 2
j

]

+ λ
∑

16k<k′6K

w
( j )
k,k′ |μk, j − μk′, j |, (2.5)

whereμμμ( j ) is the j th column ofμμμ. By taking the first derivative of objective function (2.3) with re-

spect toσ 2
j ’s, we can obtain the closed-form solutionσ̂ 2

j = 1/n
∑K

k=1
∑

i ∈Sk
(xi, j − μ̃k, j )

2, whereμ̃k, j =

1/nk
∑

i ∈Sk
xi, j . The estimation of μk, j ’s is nontrivial. When σ 2

j ’s are replaced by their
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estimates,objective function (2.3) can be transformed into a quadratic programming problem. We pro-
pose an efficient iterative algorithm based on the standard local quadratic approximation algorithm (Fan
and Li, 2001), which has been used in a number of variable selection procedures and whose convergence
properties have been studied byFan and Li(2001) andHunter and Li(2005). Specifically, let̂μ(t)

k, j bethe
estimates from thet th iteration (t = 1,2, . . .), we approximate

|μ(t+1)
k, j − μ

(t+1)
k′, j | ≈

(μ
(t+1)
k, j − μ

(t+1)
k′, j )2

2|̂μ(t)
k, j − μ̂

(t)
k′, j |

+
1

2
|μ̂(t)

k, j − μ̂
(t)
k′, j | , (2.6)

which results in an approximation to (2.5):

min
μμμ( j )

1

2(̂σ
(t)
j )2

K∑

k=1

∑

i ∈Sk

(xi, j − μk, j )
2 + λ

∑

16k<k′6K

w
( j )
k,k′

(μk, j − μk′, j )
2

2|̂μ(t)
k, j − μ̂

(t)
k′, j |

. (2.7)

DenoteYYY as thej th of X andXXX as ann × K matrix whosekth (16 k 6 K ) column is composed of ones
for those components inSk andzeros for those outsideSc

k. Let βββ = μμμ( j ). We also denoteG = (gk,k′)K×K

asa K × K matrix whose off-diagonal elementgk,k′ = −w
( j )
k,k′/|μ̂

(t)
k, j − μ̂

(t)
k′, j | andwhose diagonal element

gk,k =
∑

16k′6K ;k′ 6=k w
( j )
k,k′/|μ̂

(t)
k, j − μ̂

(t)
k′, j |. Then the following proposition shows that (2.7) has a closed-

form solution.

PROPOSITION 2.2 Objective function (2.7) is equivalent to the following generalized ridge regression
problem:

min
βββ

‖YYY − XXXβββ‖2 + λσ 2
j βββ

T Gβββ (2.8)

with a closed-form solution
β̂ββ = (XXX TXXX + λσ 2

j G)−1(XXX TYYY) . (2.9)

This procedure was repeated overt = 1,2, . . . until convergence. We list the proposed algorithm as
follows:

Step 1. Initialize μ̂
(1)
k, j = μ̃

(1)
k, j = 1/nk

∑
i ∈Sk

xi, j , 16 k 6 K , 16 j 6 p;

Step 2. In thet th iteration, updatêμ(t+1)
k, j , 16 k 6 K , 16 j 6 p, with (2.9);

Step 3. Repeat Step 2 until some stopping criterion achieves.

REMARK 2.3 In this work, the stopping criterion is defined as
∑

16k6K
∑

16 j6p |μ̂(t+1)
k, j − μ̂

(t)
k, j |/∑

16k6K
∑

16 j6p |μ̂(t)
k, j | < 105.

REMARK 2.4 For numerical stability, we threshold the absolute value ofμ̂
(t)
k, j − μ̂

(t)
k′, j ata lower bound of

10−10, and at the end of the iterations, set all estimates less than 10−10 to zero.

3. SIMULATION STUDY

To evaluate the performance of the proposed method, we modified the simulated examples inGuo and
others(2010).
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In this section, we evaluate the performance of LDA-PF on 2 simulated examples. In each example,
we generate 50 data sets, each consisting of a training set, an independent validation set, and an inde-
pendent test set, with 20, 20, and 2000 observations, respectively. The model is estimated on the training
set, and the tuning parameter is selected on the validation set by minimizing the corresponding predic-
tion error rate. We repeat this procedure on 50 data sets for each simulation and recorded the test error
rates, the false-negative rates (the proportions of incorrectly removed important variables), and the false-
positive rates (the proportions of incorrectly selected unimportant variables), averaged on the 50 data sets,
respectively.

EXAMPLE 3.1 In this scenario, there areK = 4 classes andp = 202 variables with the first 2 being
important and the remaining ones unimportant. The variables were generated as follows: the first
variable follows distributionsN(2.5,1), N(0,1), N(0,1), andN(−2.5,1) in the 4 classes, respec-
tively; the second variable follows distributionsN(1.5,1), N(1.5,1), N(−1.5,1), andN(−1.5,1)
in the 4 classes, respectively. All remaining 200 variables are i.i.d.N(0,1) for all 4 classes. In this
simulation setting, variable 1 cannot discriminate classes 2 and 3, while variable 2 cannot discrimi-
nate classes 1 and 2 (as well as classes 3 and 4).

EXAMPLE 3.2 This example considers a 5-class scenario. There are a total ofp = 203 variables with
the first 3 important and the other 200 unimportant. Similarly to simulation 1, the important variables
follow normal distributions with unit variances but different means in the 5 classes. Specifically, the
means of variable 1 are 2.5, 2.5, 0, 0,−2.5, the means of variable 2 are−2.5, 0, 0, 0, 2.5, and the
means of variable 3 is 2.5, 0, 0,−2.5,−2.5. In this scenario, variable 1 cannot discriminate classes
1 and 2, as well as classes 3 and 4; variable 2 cannot discriminate classes 2, 3, and 4; and variable 3
cannot discriminate classes 2 and 3, as well as classes 4 and 5.

The results over 50 replications for both examples are summarized in Table1. We can see that in
both examples, LDA-PF exhibit similar performance to LDA-L1 in terms of false-negative rate and false-
positive rate. and it achieves slightly lower error.

Table2 summarizes the results of identifying indiscriminable classes for those important variables.
Specifically, each row in the table gives the average proportion of the important variables that correctly
identify the corresponding indiscriminable pair of classes. For example, the first row shows that for LDA-
PF, on average 96.0% of the 50 replications, variable 1 can correctly fuse classes 2 and 3. It is also clear
that LDA-PF dominates LDA-L1 in terms of correctly fusing the indiscriminable classes. It should also
be pointed out that although LDA-L1 correctly fuses some class centroids, respectively (e.g. in the first
row), these results are artifacts. For example, in Example 3.1, the centroids of classes 2 and 3 for variable
1 are all equal to zero, which happens to be the value that the`1-penaltyshrinks to. The same reasoning
also applies to classes 2, 3, and 4 for variable 2 in Example 3.2.

Table 1. Prediction and variable selection results for Examples3.1 and3.2. Each table cell exhibits the
result averaged over50 repetitions and the associated standard deviation (in the parentheses). “ER” is
the average prediction error rate on the test set, “FN” is the average false-negative rate, that is, the
average proportion of incorrectly removed important variables, and “FP’ is the false-positive rate, that

is, the average proportion of incorrectly selected unimportantvariables

Example Method ER (%) FN (%) FP(%)

1 LDA-L1 15.6 (1.3) 0 (0) 0.2 (0.4)
LDA-PF 15.1 (1.4) 0 (0) 0.2 (0.5)

2 LDA-L1 13.4 (1.1) 0 (0) 0.5 (0.8)
LDA-PF 12.9 (1.2) 0 (0) 0.5(1.3)
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Table 2. Pairwise class fusion results for Examples3.1–3.2. “Pair” corresponds to indiscriminable class
pairs for the variables in the corresponding row. For example, the first row indicates that variable 1 is
unimportant for discriminating classes2and3. The numbers in the following columns give the proportions
of the important variables that correctly identify the corresponding indiscriminable pair of classes. All
results are averaged over50 repetitions with the corresponding standard deviations in the parentheses

Example Variable Pair LDA-L1 (%) LDA-PF(%)

1 1 2/3 96.0 (19.8) 96.0 (19.8)

2 1/2 0 (0) 96.0 (19.8)
3/4 4.0 (19.8) 92.0 (27.4)

2 1 1/2 6.0 (24.0) 96.0 (19.8)
3/4 42.0 (49.9) 94.0 (24.0)

2 2/3 100 (0) 100 (0)
2/4 98.0 (14.1) 98.0 (14.1)
3/4 98.0 (14.1) 98.0 (14.1)

3 2/3 44.0 (50.1) 90.0 (30.3)
4/5 0 (0) 90.0(30.3)

4. REAL DATA ANALYSIS

In this section, we apply LDA-PF to 2 microarray data sets: SRBCT and PALL, whose descriptions are
listed below:

• SRBCT data set: This data set contains the expression profiles of 2308 genes, obtained from 83 tis-
sue samples of small round blue cell tumors (SRBCT) of childhood cancer (Khanand others, 2001).
The 83 samples are classified into 4 tumor subtypes: Ewing’s sarcoma, rhabdomyosarcoma (RMS),
neuroblastoma, and Burkitt’s lymphoma.

• PALL data set: This data set contains gene expression profiles for 12 625 genes from 248 patients
(samples) with pediatric acute lymphoblastic leukemia (PALL) (seeYeohand others, 2002, for more
details). The samples are classified into 6 tumor subtypes: T-ALL (43 cases), E2A-PBX1 (27 cases),
TEL-AML (79 cases), Hyperdiploid> 50 (64 cases), BCR-ABL (15 cases), and MLL (20 cases). The
original data had a large number of missing intensities and the following preprocessing was applied.
All intensity values less than one were set to one; then all intensities were transformed to log-scale.
Further, all genes with log-intensities equal to zero for more than 80% of the samples were discarded,
thus leaving 12 083 genes for further consideration.

In each data set, all observations were randomly split into 2 groups: a training set (70% of all ob-
servations) and a test set (30% of all observations). LDA-PF was estimated on the training set and its
performance was evaluated on the test set. Note that both test error rate and number of selected genes
depend on the choice of the tuning parameterλ. Figure1 illustrates the test error rate with respect to the
number of selected genes when varyingλ over different values. In both data sets, we can see that the low-
est test error rate is achieved when number of selected genes varies in a large range. The optimal tuning
parameter was selected on the training set by 5-fold cross-validation. Since there may be multiple tuning
parameters corresponding to the same error rate, we choose the largest one among them. Table3 shows
the test error rates for both LDA-L1 and LDA-PF. We can see that both methods produce the same error
rate in SRBCT and PALL data sets.

LDA-PF selected 8 and 124 genes in SRBCT and PALL data sets, respectively. Figures2 and3 il-
lustrate the centroids of the selected genes estimated by LDA-PF in these 2 data sets using heatmaps.
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Simultaneous variable selection and class fusion 605

Fig. 1. The curves of the test error rates with respect to the number of selected variables. The figure in the left panel
is about SRBCT data set, and the figure in the right panel is about PALL data set.

Table 3. Classification results for the SRBCT and PALL data sets. “ER” is the prediction error rate on
the testset

Example Method ER(%)

SRBCT LDA-L1 0
LDA-PF 0

PALL LDA-L1 4.0
LDA-PF 4.0

Fig. 2. The heatmap of the estimated centroids for the 8 genes selected by LDA-PF.

In each figure, the columns correspond to classes and rows to genes. The red (green) spots represent
positive (negative) values in estimated centroids. It is easy to read the discriminable/indiscriminable
classes from these heatmaps. For example, gene “71 672” in Figure2 can discriminate class RMS from
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Fig. 3. The heatmap of the estimated centroids for the 124 genes selected by LDA-PF.
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Simultaneousvariable selection and class fusion 607

the remaining classes; gene “1727” in Figure3 can discriminate class “T-ALL” from the remaining
classes.

5. CONCLUSIONS

We have developed a penalized LDA method for simultaneously selecting important genes and identify
the corresponding discriminable classes from expression profiles and it help improve the interpretation for
the functions of particular genes in different classes. The pairwise fusion penalty introduced here can also
be applied to other classification techniques such as quadratic discriminant analysis, logistic regression
and (linear) support vector machines.
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