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Abstract
Interpretability is crucial for machine learning in many scenarios such as quan-

titative finance, banking, healthcare, etc. Symbolic regression (SR) is a classic
interpretable machine learning method by bridging X and Y using mathematical
expressions composed of some basic functions. However, the search space of all
possible expressions grows exponentially with the length of the expression, mak-
ing it infeasible for enumeration. Genetic programming (GP) has been tradition-
ally and commonly used in SR to search for the optimal solution, but it suffers
from several limitations, e.g. the difficulty in incorporating prior knowledge in
GP; overly-complicated output expression and reduced interpretability etc.

To address these issues, we propose a new method to fit SR under a Bayesian
framework. Firstly, Bayesian model can naturally incorporate prior knowledge
(e.g., preference of basis functions, operators and raw features) to improve the effi-
ciency of fitting SR. Secondly, to improve interpretability of expressions in SR, we
aim to capture concise but informative signals. To this end, we assume the expected
signal has an additive structure, i.e., a linear combination of several concise expres-
sions, of which complexity is controlled by a well-designed prior distribution. In
our setup, each expression is characterized by a symbolic tree, and therefore the
proposed SR model could be solved by sampling symbolic trees from the poste-
rior distribution using an efficient Markov chain Monte Carlo (MCMC) algorithm.
Finally, compared with GP, the proposed BSR(Bayesian Symbolic Regression)
method doesn’t need to keep an updated “genome pool” and so it saves computer
memory dramatically.

Numerical experiments show that, compared with GP, the solutions of BSR are
closer to the ground truth and the expressions are more concise. Meanwhile we
find the solution of BSR is robust to hyper-parameter specifications such as the
number of trees in the model.

Introduction
Symbolic regression is a special regression model which assembles different mathe-
matical expressions to discover the association between the response variable and the
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predictors, with applications studied in [30], [10], [11], etc. Without a pre-specified
model structure, it is challenging to fit symbolic regression, which requires to search
for the optimal solution in a large space of mathematical expressions and estimate the
corresponding parameters simultaneously.

Traditionally, symbolic regression is solved by combinatorial optimization meth-
ods like Genetic Programming (GP) that evolves over generations, see [29], [9], [6],
[28], etc. However, GP suffers from high computational complexity and overly com-
plicated output expressions, and the solution is sensitive to the initial value, see [20].
Some modifications of the original GP algorithm have been proposed to address those
problems including [1] which incorporates statistical information of generations, [23]
which deterministically builds higher-level expressions from ’elite’ building blocks,
[16] which employs a hybrid of GP and deterministic methods, [26] which exploits the
Pareto front of GP to balance accuracy and simplicity, [22] uses a divide and conquer
strategy to decompose the search space and reduce the model complexity, and [19]
which proposes a local optimization method to control the complexity of symbolic
regression.

Although some efforts have been made to improve GP, its intrinsic disadvantages
still remain unsolved. Some research work explores SR estimation methods other
than GP. For example, [12] which introduces a new data structure called Interaction-
Transformation to constrain the search space and simplify the output symbolic ex-
pression, [23] which uses pathwise regularized learning to rapidly prune a huge set
of candidate basis functions down to compact models, [3] assumes regression models
are spanned by a number of elite bases selected and updated by their proposed al-
gorithm, [2] introduces a neuro-encoded expression programming with recurrent neu-
ral networks to improve smoothness and stability of the search space, [21]which in-
troduces an expression generating neural network and proposes an Monte Carlo tree
search algorithm to produce expressions that match given leading powers.

In this work, we consider to fit symbolic regression under a Bayesian framework,
which can naturally incorporate prior knowledge, can improve model interpretability
and can potentially simplify the structure and find prominent components of compli-
cated signals. The key idea is to represent each mathematical expression as a symbolic
tree, where each child node denotes one input value and the parent node denotes the
output value of applying the mathematical operator to all the input values from its child
nodes. To control model complexity, the response variable y is assumed to be a linear
combination of multiple parent nodes whose descendant nodes (or leaf nodes) are the
predictor x. We develop a prior model for the tree structures and assign informative
priors to the associated parameters. Markov chain Monte Carlo (MCMC) methods are
employed to simulate the posterior distributions of the underlying tree structures which
correspond to a combination of multiple mathematical expressions.

The paper is organized as follows. First, we present our Bayesian symbolic regres-
sion model by introducing the tree representation of mathematical expressions. Then
we develop an MCMC-based posterior computation algorithm for the proposed model.
Finally, we demonstrate the superiority of the proposed method compared to existing
alternatives via numerical experiments.

In the following parts, we will refer to our symbolic regression method based on
Bayesian framework as Bayesian Symbolic Regression or BSR in exchange.
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Bayesian Symbolic Regression with Linearly-Mixed Tree
Representations
Denote by x = (x1, . . . , xd) ∈ Rd the predictor variables and by y ∈ R the response
variable. We consider a symbolic regression model:

y = g(x) + ε,

where g(·) is a function represented by a combination of mathematical expressions
taking predictors x as the input variable. Specifically, the mathematical operators such
as +,×, . . ., and arithmetic functions like exp(·), cos(·), . . ., can be in the search space
of mathematical expressions. For example, g(x) = x1 + 2 cos(x2) + exp(x3) + 0.1.

Choice of Basic Operators
All possible mathematical expressions are combinations of elements in a set of basic
functions. The choice of basic operators is a building block of our tree representa-
tion, see [25]. In this paper, we adopt the commonly-used operators +, ×, exp(),
inv(x) = 1/x, neg(x) = −x and linear transformation lt(x) = ax+ b with param-
eters (a, b) ∈ R2. They are able to express − and ÷ with symmetric binary operators.
In practice, the basic operators can be specified by users.

From Expressions to Trees
The mathematical expression can be equivalently represented by a tree denoted by
T , with non-terminal nodes indicating operations and terminal nodes indicating the
selected features. T is a binary tree but not necessarily a complete tree.

Specifically, a non-terminal node has one child node if it is assigned a unary op-
erator, and two if assigned a binary operator. For example, a non-terminal node with
operator + represents the operation that the values of its two child nodes are added up.
For a non-terminal unary operator, for example exp(), it means taking exponential
of the value of its child node. Note that some operators may also be associated with
parameters, like linear transformation lt(x) = ax + b with parameters (a, b) ∈ R2.
We collect these parameters in a vector Θ.

On the other hand, each terminal node η specified by ik ∈M represents a particular
feature xik of the data vector. Here M is the vector including features of all terminal
nodes. For a tree of depth d, we start from the terminal nodes by performing the
operations indicated by their parents, then go to their parents and perform upper-level
operations accordingly. We obtain the output at the root node. For example, the tree in
Figure 1 represents g(x) = cos(x1 + x2), which consists of two terminal nodes 1, 2
and two non-terminal nodes cos, +.

In short, the tree structure T is the set of nodes T = (η1, . . . , ηt), corresponding to
operators with zero to two child nodes. Some operators involve parameters aggregated
in Θ. From predictor x, terminal nodes select features specified by M = (i1, . . . , ip),
where ik indicates adopting xik of vector x as the input of the corresponding node
ηk. The specification of T , Θ and M represents an equivalent tree for a mathematical
expression g(·;T,M,Θ).
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Figure 1: Tree representation of cos(x1 + x2)

Priors on Tree Representations
Under a Bayesian modeling framework, it is critical to specify appropriate priors for
parameters, as it has the flexibility to incorporate prior knowledge to facilitate more
accurate posterior inferences. In our model, we are interested in making inferences on
the tree structure T , the parameter Θ and the selected feature indices M .

To ensure the model interpretability, we aim to control the size of tree representa-
tions, or equivalently, the complexity of mathematical expressions. The default prior
of operators and features are uniform distributions, indicating no preference for any
particular operator or feature. They can be user-specified weight vectors to pose pref-
erences.

For a single tree, we adopt prior distributions on T , M and Θ in a similar fashion
as those for Bayesian regression tree models in [7] as follows. Of note, although the
prior models are similar, our model and tree interpretations are completely different
from the Bayesian regression tree model.

Prior of Tree Structure T

We specify the prior p(T ) by assigning the probabilities to each event in the process of
constructing a specific tree. The prior construction starts from the root node.

A node is randomly assigned a particular operator according to the prior. The
operator indicates whether it extends to one child node, or split into two child nodes, or
function as a terminal node. Starting from the root, such growth performs recursively
on newly-generated nodes until all nodes are assigned operators or terminated.

Specifically, for a node with depth dη , i.e. the number of nodes passed from it to
the node, with probability p1(η, T ) = α(1 + dη)−β . It is a non-terminal node, which
means it has descendants. Here α, β are prefixed parameters that guides the general
sizes of trees in practice. The prior also includes a user-specified basic operator set and
a corresponding weight vector indicating the probabilities of adopting each operator
for a newly-grown node. For example, we specify the operator set (operator) as Ops=
(exp(), lt(), inv(), neg(), +, ×) where lt(x) = ax + b, inv(x) = 1/x,
neg(x) = −x, and the uniform weight vector wop = (1/6, 1/6, 1/6, 1/6, 1/6, 1/6).
Such default choice shows no preference for any particular operator.

With probability p1(η, T ), the node η is assigned an operator according to wop if
it is non-terminal and grows its one or two child nodes. Then its child nodes grow re-
cursively. Otherwise it is a terminal node and assigned some feature in a way specified
later. The construction of a tree is completed if all nodes are assigned or terminated.
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Prior of Terminal Nodes M

When a node is terminated, it is assigned a feature of x according to the prior of features
as input of the expression. The number and locations of terminal nodes are decided by
structure of T . Conditioned on T , the specific feature that one terminal node takes
is randomly generated with probabilities indicated by weight vector wft. The default
choice is uniform among all features, i.e., wft = (1/d, . . . , 1/d). It can also be user-
specified to highlight some preferred features.

Prior of lt() Parameters

An important operator we adopt here is linear transformation lt(x) = ax+ b associ-
ated with linear parameters (a, b) ∈ R2. lt() includes scalings and well enriches the
set of potential expressions. Such operation is discussed in [17] and proved to improve
the fitting. Pairs of linear parameters (a, b) are assembled in Θ and are considered
independent.

Let L(T ) be the set of lt() nodes in T , and each node η is associated with pa-
rameters (aη, bη), then the prior of Θ is

p(Θ | T ) =
∏

η∈L(T )

p(aη, bη),

where aη’s, bη’s are independent and

aη ∼ N(1, σ2
a), bη ∼ N(0, σ2

b ).

This indicates that the prior of the linear transformation is a Gaussian and centered
around identity function. The prior of σΘ = (σa, σb) is conjugate prior of normal
distribution, which is

σ2
a ∼ IG(νa/2, νaλa/2), σ2

b ∼ IG(νb/2, νbλb/2),

where νa, λa, νb, λb are pre-specified hyper-parameters.

Find the Signal: Linear Mixture of Simpler Trees
Many popular machine learning techniques, such as neural networks, can approximate
functions very well, but they are difficult to interpret. A widely celebrated advantage
of symbolic regression is its interpretability and good performance of approximating
functions. The model fitting of symbolic regression usually results in relatively simple
mathematical expressions, it is straightforward to understand the relationship between
the predictors x and the response variable y.

However, if symbolic regression produces too complicated expressions, the inter-
pretation of the model fitting becomes challenging: there exists a tradeoff between
simplicity and accuracy. To highlight the superiority of symbolic regression in in-
terpretability over other methods, we aim at finding the most prominent and concise
signals. If the features are strong and expressive, we assume that the expression should
not involve too many features, and the transformation should not be too complicated.
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Moreover, the real-world signal may be a combination of simple signals, where
only a small amount of simpler ones play a significant role. A simpler idea has its roots
in [18], where the output is appropriately scaled. SR has also been addressed with
methods related to generalized linear models, summarized in [31].

In this sense, we model the final output y to be centered at some linear combination
of relatively simple expressions

y = β0 +

k∑
i=1

βi · g(x;Ti,Mi,Θi) + ε, ε ∼ N(0, σ2)

where k is a pre-specified number of simple components, g(x;Ti,Mi,Θi) is a rela-
tively simple expression represented by a symbolic tree, and βi is the linear coefficient
for the i-th expression. The coefficients βi, i = 0, . . . , k is obtained by OLS linear
regression using intercept and g(·;Ti,Mi,Θi), i = 1, . . . , k. Let {(Ti,Mi,Θi)}ki=1
denote the series of tuples (Ti,Mi,Θi), i = 1, . . . , k. Let OLS() denote the OLS
fitting result, then a simpler form is

y = OLS
(
x, {(Ti,Mi,Θi)}ki=1

)
+ ε, ε ∼ N(0, σ2)

where the prior of the noise scale is the conjugate inverse gamma distribution

σ2 ∼ IG(ν/2, νλ/2)

where ν and λ are pre-specified parameters. Additionally let (T,M,Θ) = {(Ti,Mi,Θi)}ki=1,
the joint likelihood is

p(y, (T,M,Θ), σ, σΘ | x)

=p(y | OLS
(
x, T,M,Θ

)
, σ2)p(M,T )p(Θ | T, σ2

Θ)p(σ2
Θ)p(σ2)

=p(y | OLS
(
x, T,M,Θ

)
, σ2)p(σ2)

×
k∏
i=1

p(Mi | Ti)p(Ti)p(Θi | Ti, σ2
Θ)

Posterior Computation
We employ the Metropolis-Hastings (MH) algorithm proposed in [24] and [15] to make
posterior inferences on the proposed model. Note that (T,M,Θ) represents the set
of k trees {Ti,Mi,Θi}ki=1, and (T s,Ms,Θs) denotes the set of k trees that the MH
algorithm accepts at the s-th iteration.

With a pre-specified number of trees k, our method modifies the structure of the i-th
tree by sampling from proposal q(· | ·), and accepts the new structure with probability
α, which can be calculated according to MH algorithm. Otherwise the i-th tree stays
at its original form. The k trees are updated sequentially, so to illustrate, we first show
how a single tree is modified at each time.

The sampling of a new tree consists of three parts. The first is the structure speci-
fied by T and M , which is discrete. In this subsection, T and M stand for a single tree.
The second part is Θ aggregating parameters of all lt() nodes. The dimensionality
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of Θ may change with (T,M) since the number of linear transformation nodes vary
among different tree structures. Therefore we use the reversible jump MCMC (RJM-
CMC) algorithm proposed by [13] to solve the trans-dimensional sampling problem.
For simplicity, denote by S = (T,M) the structure parameters. The last part is the
sampling of noise variance σ2 from an inverse gamma prior.

Structure Transition Kernel
We first specify how the sampling algorithm jumps from a tree structure to a new
one. Inspired by [7] and considering the nature of calculation trees, we design the
following seven reversible actions. The probabilities from S = (T,M) to new structure
S∗ = (T ∗,M∗) is denoted as the proposal q(S∗ | S).

• Stay: If the expression involves nl ≥ 0 lt() operators, with probability p0 =
nl/4(nl + 3), the structure S = (T,M) stays unchanged, and ordinary MH step
follows to sample new linear parameters.

• Grow: Uniformly pick a terminal node and activate it. A sub-tree is then gen-
erated iteratively, where each time a node is randomly terminated or assigned an
operator according to the prior until all nodes are terminated or assigned.

To regularize the complexity of the expression, the proposal grows with lower
probability when the tree depth and amount of nodes are large. The probability
of Grow is pg = 1−p0

3 · min
{

1, 8
Nnt+2

}
,where Nnt is the number of non-

terminal nodes.

• Prune: Uniformly pick a non-terminal node and turn it into a terminal node by
discarding its descendants. Then randomly choose a feature of x to the newly
pruned node.

We set the probability of Prune as pp = 1−p0
3 − pg such that Grow and Prune

share one-third of the probability that the structure does not Stay.

• Delete: Uniformly pick a candidate node and delete it.

Specifically, the candidate should be non-terminal. Also, if it is a root node, it
needs to have at least one non-terminal child node to avoid leaving a terminal
node as the root node. If the picked candidate is unary, then we just let its child
replace it. If it is binary but not root, we uniformly select one of its children to
replace it. If the picked candidate is binary and the root, we uniformly select one
of its non-terminal children to replace it.

We set the probability of Delete as pd = 1−p0
3 · Nc

Nc+3 , where Nc is the number
of aforementioned candidates.

• Insert: Uniformly pick a node and insert a node between it and its parent. The
weight of nodes assigned is wop. If the inserted node is binary, the picked node
is set as left child of the new node, and the new right child is generated according
to the prior.

The probability of Insert is set as pi = 1−p0
3 − pd such that Delete and Insert

share one-third of the probability that the structure does not Stay.

7



• ReassignOperator: Uniformly pick a non-terminal node, and assign a new op-
erator according to wop.

If the node changes from unary to binary, its original child is taken as the left
child, and we grow a new sub-tree as right child. If the node changes from binary
to unary, we preserve the left sub-tree (this is to make the transition reversible).

• ReassignFeature: Uniformly pick a terminal node and assign another feature
with weight wft.

The probability of ReassignOperator and ReassignFeature is set as pro = prf =
1−p0

6

Note that the generation of the ’tree’ is top-down, creating sub-trees from nodes.
However, the calculation is bottom-up, corresponding to transforming the original fea-
tures and combine different sources of information.

The above discrepancy can be alleviated by our design of proposal. Grow and
Prune creates and deletes sub-trees in a top-down way, which corresponds to changing
a ”block”, or a higher level feature represented by the sub-tree in the expression. On
the other hand, Delete and Insert modify the higher-level structure by changing the
way such ”blocks” combine and interact in a bottom-up way.

Jump between Spaces of Parameters
Another issue of proposing new structure S∗ is that the number of linear transformation
nodes may change. Therefore the dimensionality of Θ may be different and RJMCMC
(reversible jump Markov Chain Monte Carlo) proposed in [13] settles the problem well.

After we generate S∗ from S, there are three situations.

• No Change. When the new structure does not change the number of lt()
nodes, the dimensionality of parameters does not change. In this case, it is suffi-
cient to use ordinary MH step. Here the set of lt() nodes may change, but the
sampling of new parameters is i.i.d., so we are satisfied with the MH step.

• Expansion. When the number of lt() nodes increases, the dimensionality of
Θ, denoted by pΘ, increases. We may simultaneously lose some original lt()
nodes and have more new ones. But due to the i.i.d. nature of parameters we
only consider the number of all lt() nodes.

Denote the new parameter as Θ∗. According to RJMCMC, we sample auxiliary
variables U = (uΘ, un) where dim(uΘ) = dim(Θ), dim(un) + dim(Θ) =
dim(Θ∗).
The hyper-parameters Uσ = (σ2

a, σ
2
b ) are independently sampled from the in-

verse gamma prior, then each element of uΘ and un is independently sampled
from N(1, σ2

a) or N(0, σ2
b ) accordingly. The new parameter Θ∗ along with new

auxiliary variable U∗ is obtained by

(U∗,Θ∗, σ∗Θ) = je(Θ, U, Uσ) = je(Θ, uΘ, un, Uσ)

=
(Θ− uΘ

2
,

Θ + uΘ

2
, un, Uσ

)
,
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where
U∗ =

Θ− uΘ

2
, Θ∗ = (

Θ + uΘ

2
, un), σ∗Θ = Uσ.

Then we discard U∗ and get Θ∗, σ∗
Θ.

• Shrinkage. Θ shrinks when the number of lt() nodes decreases. Similar to
the Expansion case, we may lose some lt() nodes and also have new ones
(especially in the ReassignOperator transition), but only the dimensionality is
of interest. Assume that the original parameter is Θ = (Θ0,Θd) where Θd

corresponds to the parameters of nodes to be dropped. Denote the new parameter
as Θ∗.
Firstly, Uσ = (σ2

a, σ
2
b ) are sampled independently from the inverse gamma prior.

The new parameter candidate is then obtained by first sampling U , whose el-
ements are independently sampled from N(0, σ2

a) and N(0, σ2
b ), respectively,

with dim(U) = dim(Θ0). Then the new candidate Θ∗ as well as the corre-
sponding auxiliary variable U∗ is obtained by

(σ∗Θ,Θ
∗, U∗) = js(Uσ, U,Θ) = js(Uσ, U,Θ0,Θd)

= (Uσ,Θ0 + U,Θ0 − U,Θd),

where
σ∗Θ = Uσ, Θ∗ = Θ0 + U, U∗ = (Θ0 − U,Θd).

Then we just discard U∗ and get U∗, σ∗
Θ.

For simplicity, we denote the two transformation je, js as jS,S∗ , indicating that
this is a transformation from parameters of S to those of S∗. The auxiliary variables
are denoted as U and U∗ respectively. Note that dim(Θ) + dim(U) = dim(Θ∗) +
dim(U∗) in both cases.

Accepting New Candidates
Return to the K-tree case. We sequentially update the K trees in a way similar to [8]
and [14]. Suppose we start from tree (T

(t)
j ,M

(t)
j ,Θ

(t)
j ), that is, the j-th tree of the t-th

accepted model, and that the newly proposed structure is (T ∗
j ,M

∗
j ,Θ

∗
j ). Denote

(T (t),M (t),Θ(t)) = {(T (t)
i ,M

(t)
i ,Θ

(t)
i )}ki=1,

(T ∗,M∗,Θ∗) = {(T ∗i ,M∗i ,Θ∗i )}ki=1,

where (T ∗
i ,M

∗
i ,Θ

∗
i ) = (T

(t)
i ,M

(t)
i ,Θ

(t)
i ) for i 6= j. Also let S∗ = (T ∗,M∗), S(t) =

(T (t),M (t)). And (σ∗)2 is the newly-sampled version of (σ(t))2. For simplicity, let
Σ(t) =

(
(σ(t))2, σ

(t)
Θ

)
and Σ∗ =

(
(σ∗)2, σ∗

Θ

)
.

If dim(Θ
(t)
i ) = dim(Θ∗), the ordinary MH step gives the acceptance rate

R =
f(y | OLS(x, S∗,Θ∗),Σ∗)f(S∗)q(S(t) | S∗)

f(y | OLS(x, S(t),Θ(t)),Σ(t))f(S(t))q(S∗ | S(t))
. (1)

If dim(Θ
(t)
i ) 6= dim(Θ∗), the RJMCMC method gives the acceptance rate
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R =
f(y | OLS(x, S∗,Θ∗),Σ∗)f(Θ∗ | S∗)q(S(t) | S∗)

f(y | OLS(x, S(t),Θ(t)),Σ(t))f(Θ(t) | S(t))q(S∗ | S(t))

· f(S∗)p(Σ∗)h(U∗ | Θ∗, S∗, S(t))

f(S(t))p(Σ(t))h(U (t) | Θ(t), S(t), S∗)

·
∣∣∣∣∂jS(t),S∗(Θ(t), U (t))

∂(Θ(t), U (t))

∣∣∣∣
(2)

In each case, we accept the new candidate with probability α = min{1, R} with R
in Equation (1) or (2). If the new candidate is accepted, we next update the (j + 1)-
th tree starting from (T (t+1),M (t+1),Θ(t+1)) = (T ∗,M∗,Θ∗) and Σ(t+1) = Σ∗.
Otherwise we update the (j + 1)-th tree starting at (T (t),M (t),Θ(t)) with Σ(t).

Pseudo-codes of the Algorithm
We sum up the algorithm as follows.

Algorithm 1 pseudo-codes of MCMC-based Symbolic Regression for linearly-mixed signals

Input: Datapoints x1, . . . , xn, labels y = (y1, . . . , yn); number of components K, number of
acceptance N ; transition kernel (proposal) q(· | ·), prior distributions p(T,M,Θ), likeli-
hood function f(y | OLS(S,Θ, x));

Output: A chain of accepted models (T (t),M (t),Θ(t));
1: From prior p(T,M,Θ), generate independently K tree models (structures and parameters)

(T
(1)
i ,M

(1)
i ,Θ

(1)
i ), i = 1, . . . ,K;

2: Calculate linear regression coefficients β(1) from datapoints xi, labels yi and models (T
(1)
i ,M

(1)
i ,Θ

(1)
i ),

i = 1, . . . , n using OLS;
3: Number of accepted models m = 1;
4: while m < N do
5: for i = 1→ K do
6: Propose S∗i = (T ∗i ,M

∗
i ) by sampling S∗i | S

(m)
i ∼ q(·;S(m)

i );
7: if dim(Θ∗i ) 6= dim(Θ

(m)
i ) then

8: Sample U (m)
i ∼ h(U

(m)
i | Θ(m)

i , S
(m)
i , S∗i );

9: Obtain (U∗i ,Θ
∗
i ) = j

S
(m)
i ,S∗

i

(Θ
(m)
i , U

(m)
i );

10: Calculate linear regression coefficients β∗ from datapoints xi, labels yi and mod-
els (T ∗,M∗,Θ∗) using OLS;

11: Calculate the ratio R in Equation (2);
12: else
13: Directly sample Θ∗i ∼ p(· | S∗i );
14: Calculate coefficients β∗ from xi, yi, i = 1, . . . , n and models (T (m),M (m),Θ(m))

using OLS;
15: Calculate the ratio R in Equation (1);
16: end if
17: α← min(1, R);
18: Sample u ∼ U(0, 1);
19: if u < α then
20: for j = 1→ K do
21: if j = i then
22: S

(m+1)
j ← S∗j , Θ

(m+1)
j ← Θ∗j ;
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23: else
24: S

(m+1)
j ← S

(m)
j , Θ

(m+1)
j ← Θ

(m)
j ;

25: end if
26: end for
27: β(m+1) ← β∗;
28: m← m+ 1;
29: end if
30: end for
31: end while

Experiments
The experimental results of GP and BSR methods are presented here. Firstly, we com-
pare their generalization and domain adaptation ability by comparing RMSEs on both
training and testing data. Secondly, we compare the complexity of the mathematical
expressions generated by these two methods. Finally, we examine the robustness of
the proposed BSR method by testing whether the estimated model is sensitive to the
parameter K, which is the number of trees used in the linear regression.

Experiment Designs
Benchmark Problems

We set up a benchmark mathematical expression sets with six tasks presented from
Equations (3) to (8). These task formulas borrow the ideas from [5],[27] and [4], and
are used to evaluate the proposed model. The following task is to estimate a specific
BSR model on each of the formulas. As we have mentioned, these problems have been
widely used to test other symbolic regression methods, including those based on GP,
and so it is convenient for us to compare BSR with GP directly.

f1(x0, x1) = 2.5x4
0 − 1.3x3

0 + 0.5x2
1 − 1.7x1 (3)

f2(x0, x1) = 8x2
0 + 8x3

1 − 15 (4)

f3(x0, x1) = 0.2x3
0 + 0.5x3

1 − 1.2x1 − 0.5x0 (5)

f4(x0, x1) = 1.5 exp(x0) + 5 cos(x1) (6)

f5(x0, x1) = 6.0 sin(x0) cos(x1) (7)

f6(x0, x1) = 1.35x0x1 + 5.5 sin((x0 − 1)(x1 − 1)) (8)

Datasets

We conduct experiments on simulated data. The experiment designed and used in [5]
is adopted here. For each task (corresponding to an expression), we have one training
data set and three testing data sets. The training set consists of 100 samples. For each
sample, its predictor variables are generated independently from uniform distributions
in the interval [−3, 3], and the response variable is generated by the corresponding
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expression above. We consider three different testing sets, all with size of 30. Follow-
ing the same way to generate training set, the three testing sets are generated within
intervals [−3, 3], [−6, 6] and [3, 6].

Parameter Settings

The detailed settings of the two methods are introduced as follows. Note that the GP
algorithm consists of two nested iterations, the inner loop for population and the outer
loop for generation. Therefore, the number of trees generated by GP is counted as
Ng × Np, where Ng is the number of generations and Np is the population size. We
set Ng = 200 and Np = 100 in this study, and therefore a total of 200,000 trees
are generated. Meanwhile, the number of trees generated by BSR is set as 100,000. In
addition, we specify two additive components of BSR are used for all tasks in our study.
The basis function pool is set as {+,−,×,÷, sin, cos, exp, x2, x3} for both BSR and
GP method. In order to see the stability of their performances, we run the two methods
in each task for 50 times independently.

Experiment Results
Accuracy and Generalization Abilities

We use root mean square error (RMSE) on training set to measure how good the model
fits the data, and use RMSE on test set to examine the generalization ability. The
performance of two methods in all task are summarized in Table 1. This table records
the mean and standard deviation of RMSEs over 50 simulation replications for each
task. It turns out that BSR outperforms GP in most tasks, except the task defined in
equation (8). A plausible reason is that the structure of function (8) is far from linear
structure, which is one of the key assumptions of BSR.

Complexity of Expressions

One of the most important aim we propose BSR is to improve interpretability of sym-
bolic regression model by restricting the symbolic expression in a concise and readable
form. Specifically, we introduce an additive symbolic tree structure for BSR model.

To check if BSR has advantage in interpretability, we summarize the complexity of
the output from BSR and GP in Table 2, where the numbers are the means and standard
deviations of the output tree sizes (number of nodes in each tree) out of 50 replications.

According to Table 2, the number of nodes on trees generated by BSR is signifi-
cantly less that those generated by GP, leading to more concise and readable expres-
sions. Table 3 lists some typical expressions output from BSR and GP. It turns out
that expressions estimated by BSR are generally closer to the ground truth and they are
shorter and more comprehensible. The simulation study here verifies that, in favourable
scenarios, BSR reaches its aim and shows its advantage in both prediction accuracy and
interpretability.

12



Table 1: RMSEs of Both Methods
RMSEs(mean± std)

Task Dataset BSR GP

f1

train[-3,3] 2.00± 3.87 2.71± 2.43
test[-3,3] 2.04± 3.27 4.25± 4.59
test[-6,6] 92.09± 258.54 116.29± 97.59
test[3,6] 118.53± 311.57 203.31± 168.34

f2

train[-3,3] 7.30± 10.19 3.56± 5.79
test[-3,3] 6.84± 10.10 2.92± 4.41
test[-6,6] 95.33± 145.31 121.41± 126.19
test[3,6] 128.27± 221.73 174.01± 173.71

f3

train[-3,3] 0.19± 0.16 0.63± 0.33
test[-3,3] 0.21± 0.20 0.60± 0.35
test[-6,6] 9.38± 9.08 28.97± 20.68
test[3,6] 15.19± 32.24 34.08± 25.41

f4

train[-3,3] 0.14± 0.56 0.72± 1.01
test[-3,3] 0.16± 0.62 0.84± 1.12
test[-6,6] 6.96± 19.44 24.62± 29.66
test[3,6] 12.06± 38.27 31.74± 36.77

f5

train[-3,3] 0.68± 1.14 0.78± 0.96
test[-3,3] 0.66± 1.13 0.72± 0.83
test[-6,6] 1.09± 2.39 1.58± 1.55
test[3,6] 1.41± 3.57 4.49± 5.07

f6

train[-3,3] 3.99± 0.71 3.17± 0.79
test[-3,3] 4.63± 0.62 3.70± 0.93
test[-6,6] 12.22± 8.46 5.13± 1.91
test[3,6] 14.44± 10.39 11.09± 12.58

Table 2: Complexity of Expressions
Number of Nodes(mean± std)

Task BSR GP
f1 22.16± 7.44 40.85± 21.34
f2 12.25± 11.41 54.51± 38.89
f3 27.23± 10.61 22.88± 8.62
f4 13.64± 12.50 22.80± 8.82
f5 31.28± 9.13 19.80± 10.28
f6 20.08± 4.78 21.18± 25.73

Sensitivity to the Number of Components K

The number of additive components K is an important hyper-parameter in BSR model
and it is interesting to study if the optimal expression selected by BSR is sensitive to the
choice of K. To check this, we summarize the average RMSEs on testing set [−3, 3]
out of 50 replications in Table 4.

From the results we see that the RMSEs of these tasks tend to be smaller as K
grows, but the improvement of performance is not significant when K is too large. To
our surprise, experiments show that even if K is set to be smaller than what it should
be (ground truth), BSR can automatically find an approximately equivalent additive
component structure in some single trees. On the other hand, when K is significantly
larger than what it should be, BSR automatically “discards” the redundant trees by
estimating the non-informative trees as insignificant components, making them similar
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Table 3: Typical Expressions
Task Expressions

f1

Truth f1 = 2.5x4
0 − 1.3x3

0 + 0.5x2
1 − 1.7x1

GP

y = ((exp((
−x0
0.80 + 0.81)) − (((sin((0.80x0)2)

− cos(x1)6) + sin((0.80x0)2)) + cos(x1)))
−(((

x0
−0.80 ) + ((((

x0
−0.80 )

+ cos(x1)) + ((sin((0.71x0)2)
−((sin(((0.71x0))2) − 0.77))2) + 1.0)) + x1))

+(0.76 + x1))) + (((
x2
0

0.78 ))2 +
x2
0

0.80 )

BSR y = (−0.02) + (−1.30)[x3
0 + 1.30x1 + 0.09]

+(0.49)[5.05x4
0 + x2

1 + 0.31]

f2

Truth f2 = 8x2
0 + 8x3

1 − 15

GP
y = (exp(1.82)x3

1) + 5.26(x2
0 − (cos((0.90x0))

∗(exp(0.187) + cos((x2
0 cos(0.75))))))

+(x1 − 0.77)3 + exp(x1 − 0.38)(x1 − 0.38)

BSR y = (−0.02) + (−1.38)[−7.56x2
0 + 2.85]

+(8.00)[−0.30x2
0 + x3

1 − 1.38]

f3

Truth f3 = 0.2x3
0 + 0.5x3

1 − 1.2x1 − 0.5x0

GP
y = (4x1 − sin(1.32x1) − 0.69
−(sin(sin(1.32x1)/0.50)/0.76))
− sin(x0) − sin(sin(sin((cos(x1) + x1))))

BSR y = (0.04) + (−0.30)[−0.67x3
0 + 4.27]

+(−0.21)[−2.45x3
1 + 2.45x0 + x1 − 0.93]

f4

Truth f4 = 1.5 exp(x0) + 5 cos(x1)

GP

y = (((((exp(cos(x0)) + 0.59 + x0)
+exp(x0)) − cos(exp(cos(x1))))
− cos(exp(cos(sin(x1)x0))))
−x2

1 + x2
0)

BSR y = (−0.01) + (0.28)[17.74 cos(x1) + 0.45]
+(0.24)[6.26exp(x0) − 0.47]

f5

Truth f5 = 6.0 sin(x0) cos(x1)

GP y = 0.77exp(exp(sin(sin(cos(0.73x0)))))
∗x0 cos(x1)

BSR
y = (−7.06 ∗ 10−9) + (6.00)[sin(x0) cos(x1)]

+(2.66 ∗ 10−9)[sin( 0.34
sin2(x1)

−0.93exp(x0 + x1) − 0.95)]

f6

Truth f6 = 1.35x0x1 + 5.5 sin((x0 − 1)(x1 − 1))

GP

y = ((((((x1 sin(x0) + x1x0

− sin(
−x0
0.36 ) − sin((x0 + x1)))

− sin((x0x1)2)) + sin(
x1
0.36 ))

− sin((x1 sin(x0))2)) − sin(
−x0
0.36 ))

− sin(x1 sin(x0) + x1x0))
− sin(x1 sin(x0) + x1x0)

BSR
y = (−0.19) + (−0.85)[1.69x0x1 + 1.19]

+(7.00 ∗ 10−3)[exp(sin(exp(exp(exp(x1)
+(1.37x1 − 1.01)3)3)))]

Table 4: RMSEs for different K
RMSE(mean± std)

Task K=2 K=4 K=8
f1 2.04± 3.27 2.86± 5.04 0.64± 2.46
f2 6.84± 10.10 0.02± 0.03 0.03± 0.1
f3 0.21± 0.20 0.06± 0.03 0.03± 0.02
f4 0.16± 0.62 0.03± 0.06 0.01± 0.01
f5 0.66± 1.13 0.29± 0.80 0.42± 0.94
f6 4.63± 0.62 4.00± 0.34 5.28± 4.38
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with white noise.

Conclusions and Future Research
This paper proposes a new symbolic regression method based on Bayesian statistics
framework. Compared with traditional SR methods such as GP, the proposed method
exhibits its advantage in several aspects, including better model interpretability, more
executable prior incorporate way and more cost-effective memory use etc.

In the future, we continue this research and further improve and develop better
method for symbolic regression. For example, we will study new MCMC algorithms to
improve the search and sampling efficiency; we will study a dynamic empirical bayes
method to optimize hyper-parameters in BSR; we will also research how to extend
the proposed algorithm in a paralleled form in order to improve the computational
efficiency.
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