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Abstract

Multimodal Large Language Models (MLLMs) have001

emerged as powerful tools for chart comprehension. How-002

ever, they heavily rely on extracted content via OCR, which003

leads to numerical hallucinations when chart textual an-004

notations are sparse. While existing methods focus on005

scaling instructions, they fail to address the fundamental006

challenge, i.e., reasoning with visual perception. In this007

paper, we identify a critical observation: MLLMs exhibit008

weak grounding in chart elements and proportional rela-009

tionships, as evidenced by their inability to localize key po-010

sitions to match their reasoning. To bridge this gap, we011

propose PointCoT, which integrates reflective interaction012

into chain-of-thought reasoning in charts. By prompting013

MLLMs to generate bounding boxes and re-render charts014

based on location annotations, we establish connections be-015

tween textual reasoning steps and visual grounding regions.016

We further introduce an automated pipeline to construct017

ChartPoint-SFT-62k, a dataset featuring 19.2K high-018

quality chart samples with step-by-step CoT, bounding box,019

and re-rendered visualizations. Leveraging this data, we020

develop two instruction-tuned models, ChartPointQ2 and021

ChartPointQ2.5, which outperform state-of-the-art across022

several chart benchmarks, e.g., +5.04% on ChartBench.023

1. Introduction024

Recently, with Large Language Models (LLMs) demon-025

strating strong understanding and generalization capabil-026

ities [4, 8, 50, 55], Multimodal Large Language Models027

(MLLMs) have become the mainstream for processing mul-028

timedia data such as images and videos [5, 36, 41, 49].029

Charts, as an intuitive way to present complex data, are030

widely adopted in documents and on the internet. However,031

current MLLMs heavily rely on optical character recogni-032

tion (OCR) results when processing charts. When the text033

information extracted by OCR is limited, the MLLMs strug-034

gle to interpret the charts accurately, even leading to numer-035

ical hallucinations [35, 59, 65]. Thus, extracting chart con-036

tent accurately and attaining profound chart comprehension037

continues to be challenging tasks.038

Step 1

Step 2

Question: According to this chart, for Japan, what is the Sales in thousands at Years 2021?

First, we look at the legend to identify the color 
representing Japan 
<bbox>(140,200),(350,370)</bbox>... Next, we find the 
data point on the x axis corresponding to the year 2021 
<bbox>(770,850),(870,960)</bbox>... Then, we follow 
the vertical line above the year 2021 until it intersects 
with the teal line representing Japan 
<bbox>(760,790),(900,880)</bbox>. Finally, we look at 
the y value (<bbox>(80,700),(260,850)</bbox>) at this 
intersection point... The y value (sales in thousands) for 
Japan in 2021 is approximately \box{250}.

Step 3

Step 4

Chain of Thought with BBox (Ours)

Let's break down the process step by step:
1. Identify the Line for Japan: In the chart, Japan is xxx..
2. Locate the Year 2021: Find the year 2021 on the x-
axis of the chart.
3. Find the Intersection: Look for where the teal line xxx.
4. Read the Value: At the intersection point xxx.
So, the sales of electric vehicles in Japan for the year 
2021 were approximately 500 thousand units.

Chain of Thought

Figure 1. Comparison between vanilla CoT and proposed CoT
with bounding box reflection on Qwen2-VL [58]. Vanilla CoT
fails to introduce visual-level reflections. We re-render the gener-
ated BBox on the query chart to verify area focus and successfully
improve the precision of the extracted numbers.

Existing methods attempt to address this issue through 039

Supervised Fine-Tuning (SFT), including using more 040

instruction-tuning data [21, 35, 43], increasing the chart res- 041

olution [75], or adopting more meticulously crafted align- 042

ment training techniques [44, 66, 68]. However, MLLMs 043

still exhibit a limited perception of chart content. Recently, 044

the inference-time scaling law and the reasoning models 045

trained on it have exhibited impressive and in-depth reason- 046

ing capabilities [20, 82]. Chain-of-Thought (CoT) training 047

has notably enhanced LLMs’ proficiency in mathematics, 048

logic, and code [60, 79]. This motivates us to refine reason- 049

ing paradigms and inference formats of MLLMs on charts, 050

especially in scenarios with sparse text annotations. 051

Do current MLLMs truly grasp the correct logic for chart 052

interpretation? As depicted in Fig. 1, while the MLLMs 053

present reasonable steps for chart-reading, the numbers 054

they extract still contain significant errors. This situation 055

prompts a crucial question: do MLLMs rely excessively 056

on the extracted numbers when interpreting charts, thus 057

lacking the capacity to read from chart elements and pro- 058

portional relationships? To explore this, we employ the 059

MLLMs [6, 58] with satisfying localization capabilities, 060

which can denote object positions using bounding boxes 061

(BBox) or points. We prompt the model to point out 062
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the positions that match each reasoning step. Regrettably,063

MLLMs either overlook this request or generate entirely064

irrelevant positions. This implies that while the CoT ap-065

proach bolsters the MLLM’s logical processing based on066

numbers, it fails to enhance the model’s fundamental nu-067

merical perception. Although CoT generates more infer-068

ence tokens, it fails to enable additional interactions with069

chart or visual tokens, leading to limited perceptual im-070

provement of MLLMs [27, 51]. Hence, we enhance CoT071

by incorporating a reflective interaction process, where the072

model outputs BBoxes and engages with re-rendered charts073

(Fig. 1). Hence, we construct CoT data with BBox re-074

flection called PointCoT. We enhance the model’s reason-075

ing chain through a structured inference process and in-076

troduce an automated annotation pipeline leveraging chart-077

code pairs and advanced LLMs for precise step decomposi-078

tion and key position localization.079

This pipeline consists of four stages. 1) Step Decom-080

position: We collect high-quality chart-code pairs and use081

LLMs to generate a numerical question and corresponding082

CoT reasoning steps. The LLM labels each step as Ground-083

ing (requiring chart data extraction) or Reasoning. We will084

add point markers on the chart for all grounding steps. 2)085

Code Editing: LLMs modify the code for all grounding086

steps by inserting special characters at key positions for087

easier position extraction. Directly employing MLLMs is088

unreliable for this task. Hence, we employ LLM-based089

code editing to achieve high success. Thus, each ground-090

ing step has a corresponding edited code. 3) Code Ren-091

dering: We execute all modified code and re-render the092

charts. If any CoT step fails or triggers warnings, we dis-093

card the sample. 4) Position Localization: We perform OCR094

on each rendered chart to extract embedded character posi-095

tions. Through format checks, we ultimately derive BBoxes096

for grounding steps. Ultimately, we construct 19.2K sam-097

ples, each containing a detailed CoT process and position098

annotations. We further present ChartPoint-SFT-62k,099

a dataset of 62.3K instructions, along with two SFT models100

called ChartPointQ2 and ChartPointQ2.5. We achieve signifi-101

cant improvements across chart benchmarks, demonstrating102

the effectiveness of PointCoT. Our contributions are sum-103

marized as follows:104

a) We introduce PointCoT, which enables the MLLM to105

verify whether its reasoning steps align with the chart106

content using generated bounding boxes.107

b) We present ChartPoint-SFT-62k, a dataset con-108

taining 63.2K instruction-tuning samples. We also pro-109

vide a data annotation pipeline to label the correspond-110

ing chart locations for CoT steps.111

c) We propose the ChartPointQ2 and ChartPointQ2.5 based112

on proposed instruction data. Extensive experiments113

demonstrate that our models achieve state-of-the-art114

performance in chart understanding benchmarks.115

2. Related Works 116

Multimodal Large Language Models adopt projectors to 117

connect LLMs with visual encoders to understand im- 118

ages and demonstrate remarkable performance [83]. Some 119

works employ QFormers [28] for modal alignment on large 120

image-text pair datasets [2, 5, 28, 73]. Other works fur- 121

ther simplify the architecture with a linear projector and ex- 122

tend the instruction tuning paradigm to visual tasks [36, 67]. 123

Training strategies and data quality are crucial for the de- 124

velopment of MLLMs. The GPT series [9, 48, 50, 82] 125

and Claude series [3] are the models with SOTA perfor- 126

mance. The LLaMA series [19, 54–56] initially leads the 127

open-source community and spawns works like the LLaVA 128

series [36–38]. The Qwen series [4–6, 58, 69, 70] and In- 129

tern series [10, 13–15, 17, 52, 77] have further elevated the 130

performance of open-source models to SOTA level. The 131

DeepSeek series [8, 16, 20, 31, 32, 41, 61] and Mistral se- 132

ries [24] conduct in-depth explorations of the Mixture of 133

Experts architecture for MLLMs. 134

Chart Reasoning involves using MLLMs for tasks like 135

question answering, description, analysis, and summariza- 136

tion of charts. Two-stage methods center on generating in- 137

termediate chart representations via specialized extraction 138

modules. These representations can take forms such as 139

markdown, as explored in [25, 33, 34], or dictionaries, as 140

seen in [12, 62]. Subsequently, they are supplied as text 141

prompts to LLMs. End-to-end methods attempt to opti- 142

mize MLLMs with more chart-related instructions [21, 64]. 143

Alignment training is employed to supplement prior knowl- 144

edge in the chart domain, e.g., tabular [11, 35, 44], mark- 145

down [72, 74], JSON [68] or dictionaries [23]. Chart- 146

Thinker [39] and DOMINO [57] propose the CoT for chart 147

reasoning, and LaMenDa [84] further integrates step-by- 148

step reasoning into the supervised fine-tuning stage. Tiny- 149

Chart [75] upsamples the chart resolution and achieves 150

a notable performance improvement. Moreover, recent 151

works [66, 71] attempt to combine the advantages of the 152

above approaches using the mixture of experts architecture. 153

Multimodal Chain of Thought aims to extend text-based 154

CoT reasoning [20, 60] to multimodal scenarios to en- 155

hance performance in tasks requiring logical reasoning. 156

Some two-stage works either convert visual information 157

into text [46, 47, 79] or sample key image information (e.g., 158

region [51] or coordinate [26]). GoT [76] generates directed 159

acyclic graphs to assist reasoning. Recently, structured rea- 160

soning is proposed to enhance the robustness of the CoT. 161

Both InsightV [18] and LLaVA-CoT [63] propose a reason- 162

ing framework based on human design to solve a wide range 163

of visual question-answering problems. Further research 164

aims to enhance the interaction between the reasoning steps 165

and the query image in structured scenarios [27, 53]. 166
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random 

sample

Instruction

Case pool

Grounding step Reasoning step 

Plot code Step 1
Step 2

Step 3
Step n

Answer
Qwen-2.5 Questio

n

...

{
    "Question": "What was the number of domestic cases in 2018?",
    "Answer": "459",
    "Steps": [
        {
            "action": "Locate 2018 on the X-axis.",
            "type": "Grounding"
        },
        {
            "action": "Identify the bars corresponding to 'Domestic' cases.",
            "type": "Grounding"
        },
        {
            "action": "Find the height of the 'Domestic' bar for the year 2018.",
            "type": "Grounding"
        },
        {
            "action": "The height corresponds to the number of domestic cases.",
            "type": "Reasoning"
        }
    ]
}
 

example
CoT step generation based on plot code

Example of generated CoT steps 

Figure 2. Chain of thought step generation based on plot code.

3. Proposed Method167

3.1. PointCoT168

To enhance the reasoning process, we focus on constructing169

extensive thinking-chain data for chart-based Q&A while170

leveraging coordinate points to guide the model’s attention171

to relevant chart regions. To ensure the model learns cor-172

rect chart-reading logic, we select charts without datapoint173

annotations, preventing it from extracting answers directly174

via OCR. Specifically, our metadata construction is based175

on the ChartAlign dataset [66], which comprises one mil-176

lion quadruples (table, JSON, code, chart) sourced from177

ChartQA [42], PlotQA [45], and ChartY [12]. Our objec-178

tive is to generate chain-of-thought reasoning data for charts179

and incorporate coordinate-based cues at each step to justify180

the model’s focus region. The following sections detail the181

step-by-step process of constructing the training data.182

3.2. Construction of Structured Reasoning183

Researchers typically employ advanced LLMs to decom-184

pose and expand the reasoning process of the text data,185

aiming to obtain long chain-of-thought inference processes.186

Recent studies have also demonstrated that distillation187

learning based on such data enables smaller models to ac-188

quire strong reasoning abilities [20]. Unlike general vi-189

sual Q&A tasks that require diverse knowledge and rea-190

soning styles, chart Q&A exhibits a structured thought pro-191

cess, i.e., the model infers correct numbers from visual ele-192

ments like legends and coordinate systems through consis-193

tent steps, which can be enhanced with structured reasoning194

training. Fig. 2 elaborately outlines the process of our rea-195

soning data construction. Our primary focus lies in straight-196

forward chart comprehension, centered around chart data197

points Q&A. Although the reasoning process appears struc-198

tured, this structure does not arise from artificial constraints.199

Instead, it emerges naturally from the inherent logic of chart200

reading, imparting a degree of structural consistency to the201

grounding

step only

random 

sampling

Instruction

Case pool

Plot code Qwen-2.5

example

Step as instructionCoT steps
Edited code Image

render

Insert special token into plot code according to     steps

# Instruction 1: Highlight the chart title.
plt.title('Number of Food Safety @ Incidents from 2015-2022')
 
# Instruction 2: Identify the 'Domestic' label in the legend.
ax1.bar(x, bar_data, color='#4E0B5A', align='center', label='Number of @ Domestic Incidents')
 
# Instruction 3: Determine the x position of 2018.
x[3] = '2018@'
 
# Instruction 4: Highlight the data point for 2018.
bars = ax1.bar(x, bar_data, color='#4E0B5A', label='Number of Food Safety Incidents')
for idx, bar in enumerate(bars):
    height = bar.get_height()
    if x[idx] == '2018':
    ax1.text(bar.get_x() + bar.get_width() / 2., height, '@', ha='center', va='bottom',             

color='red', fontsize=12, fontweight='bold')
 

Example of edited code demo 

Figure 3. The pipeline of code editing with grounding steps.

decomposed CoT steps. 202

Fig. 2 presents an example chart and the generated 203

JSON. First, we utilize the teacher model (i.e., Qwen2.5- 204

72B [70]) to pose a datapoint-related question based on the 205

plotting code. We require the teacher to provide a step-by- 206

step reasoning process and the final answer. We employ 207

few-shot examples to standardize the step-decomposition 208

format and ask the teacher model to classify each sub-step 209

into two categories: Grounding and Reasoning. Refer to 210

Appendix B for the detailed prompt. Grounding steps focus 211

on identifying the positions of chart elements, such as locat- 212

ing points on the axes or entries in the legend. Reasoning 213

steps involve making logical inferences based on informa- 214

tion obtained from previous grounding steps. This classifi- 215

cation helps incorporate specific bounding boxes for steps 216

that require element localization, thereby offering precise 217

positional guidance. Finally, we instruct the teacher model 218

to generate outputs in JSON format. Samples that pass both 219

the format validation and key integrity checks proceed to 220

the following processing stage. 221

3.3. Construction of Point Annotation 222

Our goal is to incorporate location supervision into all 223

grounding steps, guiding the model to follow human-like 224

chart-reading logic. We believe the generated bounding 225

boxes not only validate the grounding steps but also en- 226

courage the model to re-examine the original input chart. 227

Therefore, we implement point-based CoT training through 228

grounding. MVoT [27] also achieves similar observations 229

in other structured scenarios, e.g., puzzle-solving games. 230

Fig. 3 elaborately depicts how we add the position points 231

to all grounding steps. Our modifications are based on re- 232

vising the plotting code and OCR on the re-rendered chart. 233

Specifically, we instruct the teacher model to identify the 234

relevant elements (e.g., legend or title) or positions (e.g., 235

datapoints or corresponding horizontal and vertical coordi- 236

nates) for each grounding step. Next, the teacher model 237
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Grounding step Reasoning step 

Step 1
Step 2

Step 3
Step n

Answer

Questio
n

...

CoT step generation based on plot code

Answer

Questio
n

AnswerQuestionChart

Chart Question BBoxStep

Edited Chart Question BBoxStep

Edited Chart Question AnswerStep Step

Type 1

Type 2

Type 3

Type 4

Chart

Chart

Edited Chart

Edited Chart

Type 1

Type 2

Type 3

Type 4

Question Grounding Step Reasoning Step Answer BBox

Figure 4. The process pipeline for constructing instruction data.
The red / green indicates the instruction prompt / ground truth.

Table 1. Data processing steps and corresponding success rate. #
indicates the number of instructions.

Processing Step Meta CoT Code Render OCR QA#

Chart Number 66.84K 64.28K 48.75K 24.88K 19.2K 62.3K
Success Rate - 96.17% 75.84% 51.04% 77.17% -

modifies the plotting code based on the identified positions238

by inserting a special symbol into the chart element text or239

marking a specific position using plt.text(). This in-240

sertion not only highlights key positions but also facilitates241

the quick detection of unique characters with OCR tools.242

After passing the integrity check, the edited code is re-243

rendered to generate the updated chart. We then apply OCR244

to the re-rendered chart to extract the coordinates of the in-245

serted special characters. To enhance extraction accuracy246

and success rates, we employ multiple OCR tools sequen-247

tially. A minimum width is defined for the bounding boxes248

generated by special characters, and any boxes more minor249

than the threshold are adjusted based on the center point and250

the pre-set width. Each grounding step is associated with an251

edited code, a re-rendered chart, and the detected positions252

from OCR. Refer to Appendix A for details.253

3.4. Construction of Instruction254

After obtaining the bounding boxes for all grounding255

steps, we begin constructing instruction data with loca-256

tion annotations. Fig 4 illustrates the process to construct257

ChartPoint-SFT-62k, which primarily includes four258

formats and 62K Q&A pairs.259

Type 1: Standard VQA. The raw chart and question are260

used as input. 1) Supervised with ground truth answer. Un-261

like previous ChartQA [42], the data points are not directly262

labeled with text, making the questions more challenging.263

2) Supervised with CoT steps and the answer as long text264

supervision. Here, the bounding boxes from the ground-265

ing step are excluded to prevent potential data leakage and266

avoid affecting other formats. Type 2: Localization Task.267

Different from direct Q&A, we introduce intermediate steps268

Figure 5. Statistic information of ChartPoint-SFT-62k.
Left: Statistics on the number of CoT steps w.r.t. grounding, rea-
soning, and total steps. Right: chart type distribution.
Table 2. Instruction data used for ChartPoint superivised training.

Dataset Description Number

Chart Knowledge Alignment Stage
MMC-Instruct [35] VQA / Summariztion/ Reasoning 410K
ChartGemma [43] VQA / Summariztion/ Reasoning 160K

ChartQA [42] VQA 28K
ChartBench [65] VQA 30K

Chart Specific Annealing Tuning Stage
ChartPoint-SFT-62k VQA / Reasoning 62K

into the query prompt. The ground truth is changed from 269

the answer to the predicted bounding box, which is a local- 270

ization task. Type 3: Reasoning with Edited Chart. The 271

bounding box annotations in the previous grounding steps 272

will be redrawn on the vanilla chart to attract attention to 273

the key position, aiding the model in learning the correct 274

visual reasoning logic. If the next step is also a grounding 275

step, the model will continue to predict the next bounding 276

box based on the edited chart. Type 4: Reasoning Steps. If 277

the next step is the reasoning step, it will be added to the 278

query prompt directly. Once the final step is processed, the 279

supervised ground truth will be the final answer. 280

3.5. Quality Control 281

Considering the lengthy data generation process, we imple- 282

ment quality control at every step and track success rates. 283

As shown in Tab. 1, we randomly sample 66.84k quadru- 284

ples from ChartMoE-Align [66]. 1) We expand the rea- 285

soning process based on the plot code and perform the in- 286

tegrity check on the generated JSON (Fig. 2). We employ 287

GPT-4o [49] to review the generated Q&A given the metat- 288

able data to filter out mismatched samples. The pass rate is 289

96.17%. 2) We modify the plotting code by incorporating 290

the grounding step as the instruction (Fig. 3). We ensure the 291

code integrity and verify the presence of the required unique 292

character in the code. The pass rate is 75.84%. 3) We exe- 293

cute the modified code to render the edited charts. One case 294

will be discarded if any code execution fails, resulting in a 295

lower success rate of 51.04%. 4) We use OCR to detect spe- 296

cial characters and extract the bounding boxes. We discard 297

the cases where OCR fails or detects multiple occurrences. 298
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Table 3. The relaxed accuracy (%) performance on ChartQA. Ada.: Adaptive input resolution. Methods are sorted by relaxed average
accuracy@0.05. All results are reproduced in the same inference manner by officially released model weights and prompts.

Models Para. Baseline Res. Relax Acc @0.05 Relax Acc @0.10 Relax Acc @0.20
Human Aug. Avg. Human Aug. Avg. Human Aug. Avg.

General MLLMs
LLaVA-v1.5 [38] 13B Vicuna [80] @336 25.36 18.56 21.96 28.56 23.52 26.04 32.56 30.72 31.64

Qwen-VL [5] 9.6B Qwen [4] @448 40.48 79.76 60.12 43.20 82.56 62.88 47.52 85.76 66.64
Phi-3.5-Vision [1] 4.2B Phi-3.5[1] Ada. 60.08 83.52 71.80 64.00 85.92 74.96 68.16 89.36 78.76

InternlmXC-v2 [17] 8B InternLM-v2 [10] @490 62.72 81.28 72.00 66.72 84.08 75.40 70.80 86.56 78.68
InternVL-v2.5 [14] 8B InternLM-v2.5 [10] Ada. 65.44 86.48 75.96 67.36 86.88 77.12 68.80 87.44 78.12
DeepSeekVL2 [61] 27B DeepSeek-v2 [31] @384 65.52 87.76 76.64 67.52 88.08 77.80 69.60 88.96 79.28

Qwen2-VL [58] 7B Qwen2 [69] Ada. 72.08 94.24 83.16 75.76 94.72 85.24 78.24 95.76 87.00
Qwen2.5-VL [6] 7B Qwen2.5 [70] Ada. 78.96 93.76 86.36 81.12 94.16 87.64 83.60 94.72 89.16

Specialist Chart Models
Matcha [34] 282M Pix2Struct [25] Ada. 37.12 86.64 61.88 39.84 87.36 63.60 43.52 88.56 66.04

ChartVLM [62] 13B Vicuna [80] Ada. 42.08 82.48 62.28 43.84 82.88 63.36 46.00 83.28 64.64
DocOwl-v1.5 [22] 8B mPLUG-Owl2 [74] @448 47.44 91.52 69.48 51.92 92.08 72.00 56.72 93.12 74.92

Deplot [33] 13.2B LLaVA-v1.6 [37] Ada. 53.44 87.68 70.56 56.80 88.48 72.64 60.64 90.08 75.36
OneChart [12] 13.3B LLaVA-v1.6 [37] @1024 54.48 87.12 70.80 57.60 87.84 72.72 62.00 88.64 75.32

ChartLlama [21] 13B LLaVA-v1.5 [38] @336 58.40 93.12 75.76 61.20 93.60 77.40 63.52 94.00 78.76
ChartGemma+PoT [43] 3B PaliGemma [7] @448 67.84 85.28 76.56 68.64 85.84 77.24 69.84 86.32 78.08

ChartAst [44] 13B Sphinx [30] @448 64.88 93.12 79.00 66.24 93.84 80.04 67.44 94.32 80.88
TinyChart+PoT [75] 3B TinyLlava [78] @768 70.24 90.72 80.48 71.20 91.44 81.32 72.40 92.56 82.48
ChartMoE+PoT [66] 8B InternlmXC-v2 [17] @490 78.32 90.96 84.64 80.16 92.32 86.24 82.08 93.60 87.84

ChartPointQ2 7B Qwen2-VL [58] Ada. 76.12 94.48 85.28 78.36 94.96 86.66 81.28 95.12 88.20
ChartPointQ2.5 7B Qwen2.5-VL [6] Ada. 81.36 94.12 87.74 82.40 95.24 88.82 84.48 95.76 90.12

This step achieves a success rate of 77.17%. Finally, we299

construct 19.2K charts and 62.3K instruction data as illus-300

trated in Fig. 4. We randomly sample 100 cases, which are301

reviewed by at least three experts to evaluate the bounding302

box quality of the grounding step based on the process in303

Fig. 2. 91% of the cases meet the desired standard.304

3.6. Statistics305

Fig. 5 presents the statistics of ChartPoint-SFT-62k.306

As shown in Fig. 5 (left), we carefully count all the CoT307

steps and organize the samples based on the length of the308

CoT steps. Most samples contain 3-5 CoT steps. No-309

tably, the grounding steps are typically longer (length >310

3) than the reasoning steps, which are predominantly short311

(length  3) and generally focus on summary-style analy-312

ses. This is because our Q&A primarily addresses numer-313

ical data points without requiring complex numerical rea-314

soning, allowing the dataset to effectively capture the es-315

sential visual logical based more on grounding. As shown316

in Fig. 5 (right), we primarily focus on three chart types,317

i.e., line (33.6%), pie (9.3%), and bar (57.1%) charts,318

which is consistent with the distribution of mainstream319

chart datasets [42, 45].320

3.7. ChartPoint321

We integrate bounding box reflection into the inference.322

The baseline’s grounding ability is critical for instruction323

tuning. Hence, we select Qwen2-VL [58] and Qwen2.5-324

VL [6] as baselines due to their comprehensive ground-325

ing capabilities. They can be deployed based on LLaMA-326

Factory [81] to conduct convenient training. We per-327

form a two-stage full fine-tuning process using the data in328

Tab. 2. We utilize high-quality instruction data (includ- 329

ing real-world annotated and diversely synthesized charts) 330

for chart knowledge alignment to enhance the baseline’s 331

performance. Then, we refresh the learning rate and 332

conduct chart-specific annealing tuning in our PointCoT 333

manner. The SFT models are named ChartPointQ2 and 334

ChartPointQ2.5, respectively. 335

4. Experiment 336

4.1. Implement Details 337

ChartPoint is initialized from Qwen [6, 58], which employs 338

a dynamic resolution input strategy. We keep all numerical 339

coordinates within the range of 0� 999 to adapt to the tok- 340

enizer and the pretrain format of the coordinate system. We 341

use LLaMA-Factory [81] for supervised fine-tuning over 2 342

epochs. In the first 1% of the training steps, we implement 343

a warmup phase with a learning rate of 5e � 5. We adopt 344

the AdamW [40] optimizer with a constant weight decay of 345

0.1 throughout the training. The gradient clip is set to 1.0. 346

We conduct gradient accumulation with an equivalent batch 347

size of 64 and train using bfloat16 precision. The training 348

process consumes around 262 GPU Hours (A100-40G). 349

4.2. Benchmarks 350

ChartQA [42] test split comprises 1, 250 questions from 351

both human-generated and augmented segments. The charts 352

are sourced from web crawls with three prevalent chart 353

types. ChartQA requires the model to respond to questions 354

with only a single word or phrase and employs a lenient 355

matching method to verify the correctness of the answers. 356

Considering the impact of inference length on performance, 357
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Table 4. The accuracy (%) performance on ChartBench. Our proposed ChartPoint consistently outperforms other MLLMs remarkably.

Models Regular Type Extra Type ALL
Line Bar Pie Avg. Area Box Radar Scatter Node Combin. Avg.

General MLLMs
LLaVA-v1.5 [38] 29.12 21.26 17.28 22.10 21.73 20.94 27.50 23.47 36.80 24.30 24.96 23.38

Qwen-VL [5] 38.00 20.71 38.24 29.46 28.83 24.17 35.00 19.50 18.50 25.50 26.56 28.18
Mini-Gemini [29] 34.88 36.12 40.40 36.77 31.20 23.33 30.60 35.20 43.60 27.90 30.61 34.37

InternlmXC-v2 [17] 68.16 48.74 56.60 54.50 27.47 25.33 40.10 52.93 50.40 46.20 39.72 48.41
InternVL-v2.5 [14] 75.20 48.31 52.00 55.09 32.00 20.00 44.00 45.33 70.00 48.00 42.11 49.43
DeepSeekVL2 [61] 69.28 49.66 47.40 53.71 40.80 44.40 40.50 76.14 45.40 59.50 51.31 53.02

Qwen2-VL [58] 74.40 50.77 63.00 58.36 56.93 40.00 50.00 81.33 64.00 68.00 59.40 58.90
Qwen2.5-VL [6] 80.88 54.06 68.20 62.73 37.33 46.13 51.90 72.27 74.40 74.00 57.26 60.91

Specialist Chart Models
Matcha [34] 6.80 5.05 3.60 5.18 0.27 1.60 6.20 3.46 5.40 4.80 5.81 4.84

ChartVLM [62] 21.92 14.16 10.50 15.16 7.47 7.87 8.00 7.87 5.40 10.50 8.38 11.96
ChartLlama [21] 26.80 18.83 20.80 20.99 14.27 12.00 24.30 27.73 26.20 25.80 21.71 21.31
TinyChart [75] 32.40 25.81 22.50 26.71 10.13 14.80 13.40 28.14 10.80 21.60 22.56 22.51

Deplot [33] 31.20 26.46 24.00 27.09 21.34 13.34 24.00 41.34 42.00 31.00 31.57 27.62
OneChart [12] 41.28 30.28 29.60 32.65 19.07 13.20 24.60 38.53 34.80 27.90 31.91 29.93

DocOwl-v1.5 [22] 49.60 31.69 31.54 35.68 12.27 23.33 22.50 36.13 29.60 38.80 27.38 32.05
ChartGemma [43] 50.48 38.21 32.10 39.89 28.27 24.13 28.10 48.00 41.80 43.40 42.47 38.46

ChartMoE [66] 71.44 51.57 52.80 56.31 38.40 24.13 40.20 62.67 58.00 49.20 55.58 51.67
ChartPointQ2 79.84 54.58 68.24 63.04 58.20 44.12 52.40 83.67 68.24 68.92 62.09 62.61

ChartPointQ2.5 82.40 58.88 71.40 66.71 51.44 48.33 56.90 77.27 78.00 80.20 65.03 65.95

instead of prompting the model to produce the shortest pos-358

sible answers, we adopt a template-based answer extraction359

method, i.e., provide your final answer in \box{}. Refer to360

Appendix B for details. This approach effectively enhances361

the performance of mainstream models.362

ChartBench [65] offers charts that lack data point annota-363

tions. It encompasses 9 main categories and 42 subcate-364

gories, with each sub-category housing 50 charts. Chart-365

Bench emphasizes the reliability of chart numbers, present-366

ing a stiffer challenge since models are unable to obtain pre-367

cise answers via OCR. The models must understand each368

element of the chart to estimate values close to the ground369

truth. This benchmark uses a relaxed accuracy similar to370

ChartQA, and we also adopt the inference prompt of tem-371

plate extraction to boost model performance.372

4.3. Comparative Models373

We divide all methods into two groups: general MLLMs374

and those specifically designed for chart understanding.375

General MLLMs. We compare LLaVA-v1.5 [38], which376

paved the way for image-text interaction through visual in-377

struction fine-tuning. We also compare the QwenVL se-378

ries, including v1 [5], v2 [58], and v2.5 [6]. Due to its379

strong base performance, we set this series as the baseline380

for our ChartPoint. We select Phi-3.5-Vision [1], which is381

easy to deploy on the edge devices, and the Intern series382

for their high performance, such as InternlmXComposer-383

v2 [17] and InternVL-v2.5 [14]. We also provide the result384

of DeepSeekVL2 [31], which is based on the MoE archi-385

tecture. Note that we chose the versions of these models at386

around 10B for fair comparisons.387

Specialist chart models. We provide classic chart meth-388

ods like Matcha [34] and Deplot [33]. However, we389

adopt LLaVA-v1.6 [37] to further analyze and summarize 390

their output for meaningful comparisons. We also com- 391

pare ChartVLM [62], ChartAst [44], DocOwl-v1.5 [22], 392

OneChart [12], and ChartLLama [21], which are fine- 393

tuned with chart-specific instructions. Since the Program 394

of thought (PoT) can effectively improve the numerical cal- 395

culation ability of MLLMs, we select ChartGemma [43], 396

TinyChart [75], and ChartMoE [66] for comparisons. 397

4.4. Comparison with SOTA 398

Comparisons on ChartQA. Tab. 3 presents the performance 399

of ChartPoint on ChartQA. We report the relaxed accu- 400

racy for three different margins and provide detailed re- 401

sults for two distinct parts. ChartPoint significantly out- 402

performs the baselines, e.g., ChartPointQ2 83.16% [58] 403

vs. 85.28% (+2.12%") and ChartPointQ2.5 86.36% [6] vs. 404

87.74% (+1.38%"). Even though the Qwen-VL series 405

models demonstrate sufficiently high baseline performance, 406

ChartPoint still manages to achieve remarkable enhance- 407

ments, especially in the challenging Human-annotated part. 408

This indicates that point-based CoT training can signif- 409

icantly improve the model’s ability to read and under- 410

stand charts. Notably, ChartPoint also outperforms PoT- 411

based methods [43, 66, 75]. For example, when compared 412

with ChartMoE+PoT [66], ChartPoint attains 84.64% vs. 413

87.74% (+3.10%"). This implies that increasing the rea- 414

soning length contributes to enhancing the model’s numer- 415

ical and logical capabilities, effectively overcoming scenar- 416

ios involving extensive numerical calculations. 417

Comparisons on ChartBench. Tab. 4 shows the perfor- 418

mance of ChartPoint on ChartBench, where we report the 419

detailed performance across 9 types of charts. Compared 420

to ChartQA, ChartPoint demonstrates more significant im- 421
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Table 5. Ablation study of training data in Tab. 2. CoT: stage 2
adopts the CoT data generated by Fig. 2. PointCoT: stage 2 adopts
ChartPoint-SFT-62k.

Settings ChartQA ChartBench

Human Aug. Avg. Regular Extra Avg.

Qwen2-VL 72.08 94.24 83.16 58.36 59.40 58.90
+Stage1 72.76 94.72 83.74 60.62 60.12 60.39
+Stage1+CoT 73.58 94.64 84.11 60.94 60.54 60.76
+Stage1+PointCoT 76.12 94.48 85.30 63.04 62.09 62.61

Qwen2.5-VL 78.96 93.80 86.38 62.73 58.93 61.67
+Stage1 79.16 93.88 86.52 64.22 60.82 62.68
+Stage1+CoT 79.76 93.52 86.64 64.48 61.16 62.98
+Stage1+PointCoT 81.36 94.12 87.74 66.71 65.03 65.95

Table 6. Ablation study on different MLLMs. We report the aver-
age relax accuracy@0.05 on ChartQA and ChartBench. PointCoT:
stage 2 adopts ChartPoint-SFT-62k.

Model ChartQA � ChartBench �

Qwen-VL [5] 65.70 - 28.18 -
+PointCoT 66.12 +0.42 27.92 -0.26

ChartMoE [66] 81.20 - 51.67 -
+PointCoT 81.36 +0.16 51.94 +0.27

Qwen2-VL [58] 83.16 - 58.90 -
+PointCoT 84.84 +1.68 62.12 +3.22

Qwen2.5-VL [6] 86.36 - 61.67 -
+PointCoT 87.48 +1.12 65.66 +3.99

provements on ChartBench, e.g., ChartPointQ2 58.90% [58]422

vs. 62.61% (+3.71%") and ChartPointQ2.5 60.91% [6] vs.423

65.95% (+5.04%"). While better OCR capabilities can424

enhance model performance on ChartQA, ChartBench fo-425

cuses on data points without text annotations, which bene-426

fits more from superior chart element localization and rea-427

soning abilities. This supports the advantage of point-based428

CoT over text-only CoT. Specifically, the improvement is429

more significant on extra type charts, e.g., ChartPointQ2.5430

57.26% [6] vs. 65.03% (+7.77%"). This suggests that431

Point-based CoT training enables the model to develop a432

logical chart-reading process and comprehension skills, en-433

hancing its generalization even to uncommon chart types.434

5. In-depth Analysis435

5.1. Ablation on Training Recipe436

Tab. 5 presents the ablation study on our training recipe. As437

shown in Tab. 2, we conduct the high-quality chart knowl-438

edge alignment before instruction tuning (+Stage1). We439

design detailed reasoning steps based on advanced LLMs440

(Fig. 2) to ensure even smaller models (⇠7B) can also441

benefit from inference scaling laws (+CoT). Additionally,442

we integrate grounding supervision into the CoT steps, en-443

abling the model to continuously reflect on its reasoning444

and interact with input charts to refine the reasoning chain445

(+PointCoT). Since the baseline model is optimized for446

ChartQA during pre-training, the Stage1 alignment training447

yields marginal performance improvements (e.g., Qwen2-448

VL +0.58%", Qwen2.5-VL +0.14%"). Direct distillation449

Table 7. Ablation study of bounding box format on ChartQA. In
the ground truth, we normalize the point number into 0-1 (retain
3/4 decimal) or 0-999 to indicate the grounding area.

Settings Normalize Decimal Human � Aug. � ALL �

Qwen2-VL - - 72.08 - 94.24 - 83.16 -
Type A [0-1] 4 73.52 +1.44 93.84 -0.40 83.68 +0.52

Type B [0-1] 3 74.68 +2.60 94.16 -0.08 84.42 +1.26

Type C [0-999] 0 75.36 +3.28 94.32 +0.08 84.84 +1.68

Table 8. Ablation study of prompt engineering (PE) on ChartQA.
Direct: PE from ChartQA. Match: inference step by step and ex-
tract final answer via designed pattern.

Model PE Human � Aug. � ALL �

Qwen2-VL direct 72.08 - 94.24 - 83.16 -
match 73.84 +1.76 94.32 +0.08 84.08 +0.92

ChartPointQ2
direct 75.22 - 94.24 - 84.73 -
match 76.12 +0.90 94.48 +0.24 85.28 +0.55

from reasoning steps also shows limited improvement be- 450

cause: 1) In Fig. 2, we adopt the LLM (not MLLM), 451

so the reasoning process does not leverage chart informa- 452

tion; 2) both ChartQA and ChartBench focus more on data 453

point accuracy rather than numerical calculation or reason- 454

ing. Hence, textual CoT does not improve the model’s 455

accuracy in reading basic numbers from the chart. With 456

grounding supervision, the model performance gets signif- 457

icantly improved, particularly on sparse-annotated Chart- 458

Bench (Qwen2-VL +3.71%", Qwen2.5-VL +4.28%"). 459

5.2. Ablation on Backbone 460

To demonstrate the effect of MLLMs for SFT based on 461

PointCoT, we select two baseline models with relatively 462

poor localization but strong chart-processing abilities for 463

comparisons. As shown in Tab. 6, PointCoT is highly de- 464

pendent on the underlying localization capabilities. Al- 465

though both Qwen-VL [5] and ChartMoE [66] perform ex- 466

cellently in handling chart data, the reflection based on 467

BBox fails to enhance their performance further. In con- 468

trast, both Qwen2-VL [58] and Qwen2.5-VL [6] can ac- 469

curately indicate the objects using either points or BBoxes. 470

Correspondingly, this enables PointCoT to work effectively, 471

achieving a performance improvement of more than 1%. 472

5.3. Ablation on Bounding Box Format 473

Our proposed ChartPoint reflects on the chart regions 474

by outputting (Xtop left, Ytop left), (Xbottom right, Ybottom right) as 475

bounding boxes. Our observations reveal that the numerical 476

representation format significantly impacts the tuning pro- 477

cess. Table 7 presents three formats using baselines trained 478

on ChartPoint-SFT-62k for one epoch without addi- 479

tional data or tricks. Type A normalizes numbers to four- 480

decimal values between 0 and 1, representing relative posi- 481

tions on the chart. However, it yields only a marginal per- 482

formance improvement of 0.52%. Type B rounds values to 483

three decimal places. With the same data size and training 484
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Question: What was Asus' revenue in the 

United States in 2019?

Label: 62.16

Question: What was the Consumer Price Index 

for pulses and its products across rural areas in 

India in December 2018?

Label: 117.5

Question: According to this chart, what is the 

Sales of Product B at Month Oct?

Label: 4800

Qwen2.5-VL-72B

Qwen2.5-VL-72B

Qwen2.5-VL-72B

GPT-4O

GPT-4O

GPT-4O

### Initial Assessment: The chart is showing Asus' revenue 

breakdown by region across the years from 2011 to 2019. 

The vertical axis represents "Sales in billion New Taiwan 

dollars".  The x-axis shows the years. A legend is present at 

the bottom to represent different regions by colors. 

### Step-by-Step Reasoning: 1. Identify the relevant data: 

From the legend, the USA is represented by the red-colored 

segment of each bar. 2. Locate the 2019 bar: The last bar 

on the right represents the year 2019. 3. Focus on the USA 

portion in 2019: The red portion of the stacked bar for 2019 

is situated near the top of the stack. 4. Determine the height 

and value: The USA revenue is approximately 110. 

### Final Answer: \box{110}

### Initial Assessment: The chart shows the Consumer 

Price Index (CPI) for pulses and its products in India for 

rural, urban, and all India areas across the months from 

January to December. The y-axis represents the PI, and the 

x-axis represents the months. There is a legend at the 

bottom indicating that the blue line represents rural areas, 

the black line represents urban areas, and the gray line 

represents all India.  

### Step-by-Step Reasoning: 1. Identify the relevant line: 

We focus on the blue line. 2. Locate the correct point in 

time: December is the last point on the x-axis. 3. Determine 

the corresponding value: We observe that it lies at 

approximately 121 on the y-axis. 

### Final Answer: \box{121}

### Initial Assessment: The chart illustrates the sales data for 

three distinct products, A, B, and C across different months 

from January to December. The vertical axis represents the 

sales in USD, and the horizontal axis indicates the months of 

the year. A legend at the top identifies the products: Product A 

is represented by navy blue, Product B by red, and Product C 

by green.

### Step-by-Step Reasoning: 1. Identify the Month: We look 

at the horizontal axis to locate the month of October. 2. 

Identify the Product: According to the legend, Product B is 

represented by red. 3. Read the Sales Value:  The sales for 

Product B in October are slightly above 4700.

### Final Answer: \box{4700}

### Initial Assessment: The chart is a stacked bar chart, 

which shows the sales data in billions of Taiwanese 

New Dollars (TWD) from 2011 to 2019.

### Step-by-Step Reasoning: 1. Identify the relevant 

data: The red represents USA. 2. Focus on the 2019 data: 

Look at the bar corresponding to the year 2019. 3. Find 

the USA's contribution: The height of the red section 

represents the sales in the United States. 

4. Estimate the value: By looking at the chart, we can 

visually assess the size of the red section in 2019. It 

appears to be approximately around 120 billion TWD.

### Final Answer: \box{120}

### Initial Assessment: The chart shows the CPI 

changes over months from January to December 2018. 

The vertical axis represents the Consumer Price Index 

with a base year of 2012. The horizontal axis shows the 

months from January to December.

### Step-by-Step Reasoning: 1. Identify the relevant 

data: We look for the blue line, which represents the 

CPI for rural areas. 2. Focus on the December data: We 

locate December on the horizontal axis. 3. Estimate 

the value: We identify the corresponding point on the 

blue line for December and check its value on the 

vertical axis. 

### Final Answer: \box{121}

### Initial Assessment: The chart is a bar chart titled 

"Product Sales by Month". The x-axis represents months 

from January to December. The y-axis represents sales 

in USD.

### Step-by-Step Reasoning: 1. Identify the relevant 

data: We look at the x-axis to locate the month of 

October.2. Find the October data: We focus on the red 

bar for October, which signifies Product B's sales. 

3. Estimate the value: We check the height of the red 

bar against the y-axis to determine the sales value. The 

red bar for Product B in October reaches 4000 on the y-

axis.

### Final Answer: \box{4000}

Ours

Ours

Ours

### Initial Assessment: The x-axis represents the 

years from 2011 to 2019. The y-axis represents the 

revenue in thousands.

### Step-by-Step Reasoning: 1. Locate the 2019 

data: We locate the bar for the year 2019 on the 

x-axis(830,310),(900,730). 2. Focus on the USA 

data: We identify the segment of the bar that 

corresponds to the USA according to the 

legend(820,360),(920,430). 3. Estimate the value: 

We can see the height of the red segment for the 

bar in 2019(50,320),(130,500). The revenue value 

for Asus in the USA in 2019 is 60.

### Final Answer: \box{60}

### Initial Assessment: The y-axis represents the 

Consumer Price Index. The x-axis shows the 

months from Jan. to Dec.. There is a legend that 

differentiates between Rural, Urban, and All India 

data. We are interested in the Rural data for Dec.

### Step-by-Step Reasoning: 1. Locate the data: 

We locate the "December" label on the 

x-axis(820,630),(890,720). 2. Focus on the blue 

data: We find the blue line represents the Rural 

data according to legend(350,750),(420,820). 3. 

Estimate the value: We trace the blue line to the 

point corresponding to December(850,360),(900, 

400). The value on the y-axis at this point is 121.

### Final Answer: \box{121}

### Initial Assessment: The x-axis represents the 

months from Jan to Dec, and the y-axis represents 

"Sales in USD". The legend indicates that the red 

bars represent Product B.

### Step-by-Step Reasoning: 1. Locate the data: 

We locate the month of Oct. on the x-axis 

(770,870),(830,930). 2. Focus on the red data: 

We find the red bar corresponding to Oct., which 

represents Product B(790,340),(820,920). 

3. Estimate the value: Observing the height of the 

red bar for Oct.(40,320),(130,450), we can see it 

corresponds to a value of 4800 on the y-axis.

### Final Answer: \box{4800}

Figure 6. Comparsion between Qwen2.5-VL-72B [6], GPT-4O [49] and ChartPointQ2.5 (ours). All models adhere to the output format
required by the prompt. However, both Qwen2.5-VL and GPT-4O ignore the BBox instruction. With the reflective output of the BBox, our
ChartPointQ2.5 has extracted precise numbers, and the BBoxes have provided sound explanations.

time, it achieves a 1.26% improvement, significantly out-485

performing type A. Further analysis suggests that Qwen’s486

tokenizer splits decimals into three-digit segments, poten-487

tially increasing token-level training difficulty for Type A.488

Type C retains the baseline positioning format, which varies489

across MLLMs, using numbers between 0 and 999 to rep-490

resent relative positions. This approach proves particularly491

beneficial for grounding training, leading to a 1.68% per-492

formance improvement in just one epoch. These findings493

highlight the importance of numerical representation in op-494

timizing model performance.495

5.4. Ablation on Prompt Engineering496

To effectively utilize rule-based metrics for evaluation, re-497

searchers require models to respond with a direct number498

or phrase, i.e., direct prompt. However, we observe that499

for models with excellent instruction-following capabilities,500

performance can be further improved by extending the rea-501

soning length. This conclusion is well-established in rea-502

soning models [20, 82]. Still, it also applies to MLLMs503

that are not explicitly designed for reasoning, particularly504

when compared to prompts that generate only a single word.505

Tab. 8 illustrates two types of PE on both the baseline and506

our ChartPointQ2, with modifications applied exclusively to507

the reasoning prompt while keeping the model parameters508

unchanged. For Qwen2-VL, adjusting the PE results in a509

0.92% performance improvement, particularly on the more 510

challenging Human subset. Although ChartPointQ2 already 511

demonstrated strong performance, the PE provides an addi- 512

tional 0.55% gain on ChartQA. 513

5.5. Case Visualization 514

Fig. 6 demonstrates specific cases from ChartQA and Chart- 515

Bench. We choose the powerful Qwen2.5-VL-72B [6] and 516

GPT-4O [49] for comparison with our ChartPointQ2.5. We 517

request the models to output BBox when generating the 518

CoT steps to support their reasoning (Appendix B). As 519

shown in Fig. 6, only our ChartPointQ2.5 provide the BBoxes 520

as required by the prompt, yielding more accurate numbers 521

on charts with sparse text annotations. 522

6. Conclusion 523

We propose PointCoT, a multimodal CoT training method 524

for chart understanding. We adopt the generated bound- 525

ing boxes to verify whether the chain-of-thought reasoning 526

steps are in line with the chart content. Specifically, we pro- 527

pose an automated annotation pipeline to provide the corre- 528

sponding bounding boxes in the grounding steps and thus 529

construct an instruction dataset. We provide two supervised 530

fine-tuning models based on PointCoT data and conduct ex- 531

tensive experiments to demonstrate their effectiveness. 532
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